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These notes have been designed for a lecture at the school “Mathematical and Computational
Aspects of Machine Learning” held at the Scuola Normale Superiore di Pisa from 7–11 october
2019 and for a doctoral course at SISSA, Trieste. This course aims much more at pedagogy than
completeness or presenting the very latest development in the field. It tries to be self-contained
and accessible by a wide audience, so it assumes almost no prior knowledge. My goal is to recall
basic (deep) concepts, as well as to provide some modern analytic and algorithmic tools used in
high-dimensional inference. The language, techniques and concepts I will use are borrowed from
various fields that share a lot and complement each other to form a young and dynamic research
area at the intersection of statistical mechanics of disordered systems/spin glasses, information
theory, high-dimensional probability and statistics, signal processing and machine learning. I will
emphasize the connections between these fields and their specific terminology. I will also try to be
rigorous whenever possible, and I will spend time on mathematical “details” that actually convey a
lot of information. My motivation is that I’ve been trained as a physicist and discovered the beauty
of mathematical proofs quite late, but I quickly realized that mastering all the ε’s may yield a
much deeper understanding of the physics hidden behind the apparent mess. Great references for
those who want to go beyond on the connections between statistical physics and inference are [1–3].

A main question we will (very partially) try to answer is:

When does data contains enough information so that it can be used to infer

something about the process that generated it?

This really is an information-theoretic question. Once the information-theoretic limits established
we will then naturally ask ourselves:

Can we optimally extract/process the information from the data at low computational cost

in order to perform efficient inference about the data-generating process?

This question is an engineering/algorithmic question. These two questions complement each other:
without a clear answer to the information-theoretic question, people designing algorithms could
lose time trying to improve algorithms with no hope of sucess, as they migh already be close to
optimal. Also, the understanding of the barriers to information extraction provides guidance in
algorithms design.

We will focus on a modern high-dimensional inference problem: the spiked Wigner model. This
models the task of factorizing a large noisy data matrix in order to reduce its dimension, i.e.,
principal component analysis which is probably one of the most fundamental problem in machine
learning. The choice of focusing on one problem rather than multiple ones is that it is simpler
in terms of notations etc, yet its analysis requires all key ingredients necessary in the study of
more complicated settings. Moreover applying numerous techniques to the same model helps in
connecting them and see the global picture. Finally the spiked Wigner model is intimately linked
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to the most studied spin glass model: the Sherrington-Kirkpatrick model. Therefore it will be easier
to make bridges with the rich literature in statistical physics that eventually lead to many of the
ideas and techniques presented in this course.

Notations: Bold letters (X,y, . . .) will be used for vectors, matrices etc, plain letters for scalars
(Xi, yj, . . .). We will follow the information theory convention: random variables will be capital
letters (X, Yi, . . .). Their associated outcomes/realizations are in small letters (x, yi, . . .).
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1. Bayesian inference, information theory and statistical mechanics

1.1. Statistical inference, Bayes formula and decision theory. Statistical inference. For
this part I highly recommend MacKay’s book [4].

Before going into high dimensions lets go back to the basics: What is statistical inference? An
important distinction is between forward and inverse probabilities. Consider a random generative
process x → y where x are parameters of the model, also called signal, and y = y(x) are data
generated by the process →. Forward probability involves computing the probability distribution
(or various statistics) of functions of the data. The parameters are known and fixed, the data is
not and is therefore modeled by a random variable. E.g., in “ball and boxes” exercises, something
like computing the probability of drawing yr red balls and yb blue ones –y is the unknown data
outcome–, the mean, or the variance of the random Y etc. In this case the known parameters could
be the number of balls of different colors in the urn etc. Conceptually, in forward probability the



MEAN-FIELD THEORY OF HIGH-DIMENSIONAL BAYESIAN INFERENCE 3

random experiment has not yet taken place (or equivalently it took place but nothing is known
about its outcome) and we try to predict what will happen, i.e., to predict the data it will generate
which is therefore seen as a random variable:

x→ Y .

In inverse probability, instead, the random experiment already took place and generated some
observed data y, which is therefore not random but fixed. The inference task is then to compute
the conditional probability distribution of the parameters of the process given the observed data,
in order to reconstruct the parameters which are now considered as the random variables:

y ←X.

This diagram emphasizes that we know the data, and want to inverse the process to reconstruct
the unknown parameters/signal.

The Bayes formula. The random data generative process is modeled by the likelihood function
(or simply likelihood) L(x ∣ y) ∶= P (y ∣ x). The likelihood is known, exactly or approximately (there
might be mismatch between the true likelihood that helped generate the data and the assumed
one). Here is a subtle point: the likelihood should not be considered as a probability distribution:
it is a function of the hidden parameters to infer. This is because the data is fixed. You should
never say “the likelihood of the data given the parameters”, this is wrong. Instead you should say
“the likelihood of the parameters given the data”. In the likelihood y actually plays the role of
parameters, and x its argument, thus the notation L(x ∣ y).

The parameters x are unknown, fine. But maybe you still know something about them, such as
their domain etc. All the a-priori information, i.e., the information we have/assume about x before
getting the data is encompassed by the prior P (x). The prior should never depend on the data, and
never been changed once the data acquired. Combining our a-priori knowledge and the one gained
from the data is done using the Bayes formula: the posterior distribution, which summarizes our
belief 1 about the parameters value given the data, reads

P (X = x ∣ y) = P (x ∣ y) = P (x)P (y ∣ x)
∫ dP (x′)P (y ∣ x′)

= P (x)P (y ∣ x)
P (y) .(1)

The Bayes formula can also be written in the form of the product rule:

P (x,y) = P (x ∣ y)P (y) = P (y ∣ x)P (x).

1In Bayesian inference the notion of probability is subjective: it quantifies our personal belief (or equivalently
our level of ignorance) about the outcome of the experiment. In the Bayesian interpretation the outcome of an
experiment is not fundamentally random, and therefore if we had access to more data about it and/or had a sufficient
a-priori knowledge, the outcome would become fully predictable. In Bayesianism it makes perfect sense to speak
about the probability of a one-shot experiment, as it simply measures how much we think we know about what
will happen. Also, Bayesian inference cannot be made without assumptions: it requires assuming a prior, as well as
model P (y ∣ x) for the data generative process.

In contrary in frequentism, probability is an objective notion, i.e., a fundamental feature of a system and the best
way we have to characterize its physical behavior. In this view the probability of a one-shot event makes no sense, as
it is defined as the event’s frequency when the random experiment is repeated. The outcome of a single experiment
is fundamentally random; this randomness is not due to our lack of knowledge. Frequentist statistics require no
assumptions, only repeating experiments and looking at frequencies of events.
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The marginal of the data P (y) is called evidence. In some cases extra parameters of the model θ
are known (called hypotheses). They can be included in the model by conditionning:

P (x ∣ y,θ) = P (x ∣ θ)P (y ∣ x,θ)
P (y ∣ θ) .(2)

High-dimensional inference. In classical statistics we are generally interested in settings
where the number of parameters to infer n is small with respect to the number of data points m:
n≪m. Often in this setting performing inference from the posterior or from the likelihood alone
give same results: there are so many data points that the likelihood completely dominates the prior,
so the posterior converges to the likelihood.

Inference in high dimension means that both n,m are large, and the total signal-to-noise ratio (snr)
is finite when m,n→ +∞, so that the inference is not trivial. The snr measures the signal strenght
compared to the noise. Often it means that m = Θ(n)≫ 1 but we will see that not always. This
regime is related to “big-data” and machine learning applications, where the number of data points is
huge, but the number of parameters in the model (like the weights of a neural network) is also large2.

Bayesian decision theory. In a inference task one wants to reconstruct parameters from data.
To precisely define what we mean by “reconstructing”, we need to provide an error metric that
quantifies the inference quality of our estimate of the signal. We will see that whatever reasonable
metric we use, the optimal estimator for this particular metric is always derived from the posterior.

Denote x̂ = x̂(y(x)) the output of our algorithm, or estimator :

x̂ = algo(y(x)).
Let’s say that your goal is to perfectly reconstruct the parameters, i.e., to minimize

E(x̂,x) ∶= 1 − 1(x̂ = x).(3)

E(x̂,x) is called the objective function that we want to optimize. When the objective is to be
minimized, we also call it the loss, cost, regret or energy (not surprisingly)3. But we do not have
access to the loss, as it depends on the unknown parameters. So what is the best way to approximate
the loss? By averaging it over the posterior P (x ∣ y) of course, as the posterior properly combines
all information we have about the signal. This leads to the definition of the risk R(x̂,y) of the
estimator x̂ associated to this loss4. In the case of the loss (3), the risk is the so-called block-error-rate
(a terminology coming from communication):

R(x̂,y) = pB(x̂,y) ∶= ∑
x∈Xn

P (x ∣ y)E(x̂,x)

= 1 − ∑
x∈Xn

P (x ∣ y)1(x̂ = x) = 1 − P (x̂ ∣ y).

pB(x̂,y) is the a-posteriori probability of the estimator x̂ to be wrong, given y. This quantity, as
opposed to the loss, can be in principle computed, as the x is now averaged over the posterior (in

2In modern neural networks it is often the case that n≫m, which should a-priori lead to overfitting, as there
are more free parameters than data points, so in theory the noise can be fitted. The reason why, empirically, largely
overparametrized neural networks do not overfit is a question at the forefront of the research in the field; see, e.g., a
recent article about that [5].

3When it is to be maximized instead, it is called reward, profit, utility or fitness function, depending on the
context.

4The Bayes-risk is the expectation of the risk over the evidence: R(x̂) ∶= ∫ dP (y)R(x̂,y).
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the expresison above x is a dummy variable, not the true value of the signal/parameters). Maybe
computing pB(x̂,y) is computationally expensive, but that is another issue.

So now the question becomes: which estimator/algorithm, that assumes only knowledge of y
(and maybe some prior knowledge about x), minimizes this loss? We therefore compute

x̂opt(y) ∶= argmin
x̂

pB(x̂,y) = argmin
x̂
{1 − P (x̂ ∣ y)} = argmax

x̂
P (x̂ ∣ y).

The optimal estimator to minimize the block-error-rate is therefore the MAP estimator, where
MAP stands for maximum a-posteriori5. The associated (optimal) risk is

pB(y) ∶= pB(x̂opt(y),y).
We may also be interested in the average performance of this estimator/algorithm over the data
generative process, i.e., over the evidence:

pB ∶=∑
y

P (y)pB(y).

Another loss more appropriate when the parameters are continuous (in which case perfect
reconstruction is generally doomed) and that appears often in the signal processing literature is
the square error loss E(x̂,x) ∶= 1

n∥x − x̂∥22. The associated risk is the mean-square error (MSE):

MSE(x̂,y) = ∫ dP (x ∣ y) 1
n
∥x − x̂∥22.

Let us minimize this risk (which is convex in the estimator):

∇x̂MSE(x̂,y) = 0 ⇒ ∫ dP (x ∣ y)(x − x̂) = 0.

This yields the minimum mean-square error (MMSE) estimator, which is nothing else than the
posterior mean:

x̂opt(y) ∶= argmin
x̂

MSE(x̂,y) = ∫ dP (x ∣ y)x ∶= ⟨X⟩.

We introduced a notation coming from statistical mechanics for posterior expectations: the Gibbs-
bracket ⟨X⟩ (which depends on the data). The smallest possible expected MSE, the (average)
MMSE, is then

MMSE =MMSE(X∗ ∣ Y ) ∶= ∫ dP (y)MSE(x̂opt(y),y)

= ∫ dP (y)dP (x ∣ y) 1
n
∥x − ⟨X⟩∥22

= ∫ dP (x∗)dP (y ∣ x∗) 1
n
∥x∗ − ⟨X⟩∥22.

More compactly,

MMSE(X∗ ∣ Y ) = 1

n
E∥X∗ − ⟨X⟩∥22

= 1

n
EY Var(X ∣ Y ) =

1

n
EY ⟨∥X − ⟨X⟩∥22⟩,(4)

where the first E = EX∗,Y = EX∗EY ∣X∗ . We have introduced the ∗ notation to distinguish between
a sample from the posterior X ∼ P (⋅ ∣ y), and the (random) ground-truth signal to infer X∗ ∼ P . If

5The optimal estimator is equivalently obtained by minimizing the risk R(x̂,y) or the Bayes-risk R(x̂).
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we want to emphasize that the MMSE is the expected posterior variance we write 1
nEY Var(X ∣ Y ).

If instead we prefer to think of it as the mean-square deviation between the optimal estimator and
the ground-truth we prefer the notation MMSE(X∗ ∣ Y ). But this is the same. We will keep this
notation in the remaining in order to avoid confusions.

As we will see soon the MMSE, in addition of being relevant in most applications, has the great
advantage of being more easily accessible/computed thanks to a simple relation that links it directly
to the main quantity of interest: the mutual information, or free energy (these are linked by an
additive constant). Also it is often the case that when one error metric worsen at a phase transition
point (e.g., as the noise level increases, or the amount of data decreases), the others become bad
too. This is because phase transitions are intrinsic of the problem at hand as they depend only on
the mutual information. The optimal errors are just observables and the dramatic change of the
behavior of observables happens generally at the same point. E.g., at 0 degree celsius not only the
correlation lenght between molecules of water abruptly changes, but also their mean displacement
etc.

A deep consequence of the Bayes formula: the “Nishimori identity”. Let (X,Y ) be
a couple of random variables (that can be vectors etc) with joint distribution PXY and conditional
distribution PX ∣Y . Let k ≥ 1 and let X(1), . . . ,X(k) be i.i.d. random variables with distribution PX ∣Y .
Let us denote E the expectation w.r.t. PXY and ⟨−⟩ the expectation w.r.t. the product measure
P⊗∞
X ∣Y . Then, for all continuous bounded function g we have6

E⟨g(Y,X,X(2), . . . ,X(k))⟩ = E⟨g(Y,X(1),X(2), . . . ,X(k))⟩.(5)

Proof. This directly follows from Bayes formula PXY = PX ∣Y PY = PY ∣XPX . It is equivalent to sample
the couple (X,Y ) according to its joint distribution or to sample first Y according to its marginal
distribution and then to sample X conditionally on Y from the conditional distribution. Thus
the two (k + 1)-tuples (Y,X,X(2), . . . ,X(k)) and (Y,X(1),X(2), . . . ,X(k)) have the same law. In
equations,

E⟨g(Y,X,X(2), . . . ,X(k))⟩
∶= EXYEX(2)∣Y . . .EX(k)∣Y g(Y,X,X(2), . . . ,X(k))
= EYEX ∣YEX(2)∣Y . . .EX(k)∣Y g(Y,X,X(2), . . . ,X(k))
= EYEX(1)∣YEX(2)∣Y . . .EX(k)∣Y g(Y,X(1),X(2), . . . ,X(k))

∶= E⟨g(Y,X(1),X(2), . . . ,X(k))⟩.
□

This seemingly innocent identity is actually absolutely key. It is the origin of a tremendous
number of simplifications that allow to carry a complete analysis of high-dimensional inference
problems in the Bayesian optimal setting. In an inference setting this means that the posterior
PX ∣Y is known. In the proof above this is used at the last step to replace X by X(1) ∼ PX ∣Y . It X(1)

was drawn from another distribution than the posterior PX ∣Y the proof could not be carried out:

6This identity has been abusively called “Nishimori identity” in the statistical physics literature despite that it
is a simple consequence of Bayes formula. The “true” Nishimori identity concerns models with one extra feature,
namely a gauge symmetry which allows to eliminate the input signal, and the expectation over the signal X in
expressions of the form E⟨−⟩ can therefore be dropped.
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this would create an assymetry between the X(i)’s and X. Instead in the Bayesian optimal setting
this identity says that, inside an average over everything E⟨−⟩, the signal X can be replaced by
a sample from the posterior X(1): in expectation, the signal and a posterior sample play totally
symmetric roles. As we will see, this deep symmetry is at the root of important concentration
inequalities (of the MMSE and overlap, see below).

Identity (4) showing E⟨∥X − ⟨X⟩∥22⟩ = E∥X∗ − ⟨X⟩∥22 was actually our first application of the

Nishimori identity; indeed E⟨∥X − ⟨X⟩∥22⟩ is just a function of X ∼ P (⋅ ∣ y) and of ⟨X⟩ which only
depends on y, so X can be replaced by the signal X∗. Another simplification thanks to it is

1

n
E∥X∗ − ⟨X⟩∥22

N= 1

n
E⟨∥X − ⟨X⟩∥22⟩ =

1

n
(E⟨∥X∥22⟩ −E∥⟨X⟩∥22)

N= 1

n
(E∥X∗∥22 −E⟨X(1) ⋅X(2)⟩)

N= ρ −E⟨Q⟩,(6)

where the overlap between a posterior sample and the signal is

Q(X,X∗) = Q ∶= 1

n
X∗ ⋅X.

Above X(1) =X and X(2) are i.i.d. samples from the posterior, called replicas, and a Gibbs-bracket
sandwiching multiple replicas is the expectation w.r.t. the product measure P (⋅ ∣ y)⊗∞. In the
derivation of (6) we used

E∥⟨X⟩∥22 = E⟨X(1) ⋅X(2)⟩ N= E[X∗ ⋅ ⟨X⟩] ∶= nE⟨Q⟩.

1.2. Surprise, Shannon entropy and mutual information. We want to precisely quantify
when statistical inference is possible or not by estimating if the data contains enough information
about the model parameters. But what is information, and how to quantify it? The answer has been
understood by Claude Shannon in 1948 in his seminal paper [6] who started information theory:
the entropy. Computing entropies and relatives will be one of our main goal, so let us start by
understand why it is the proper definition of information content conveyed by a random variable.

1.2.1. Shannon entropy and its properties. Surprise and Shannon entropy. For simplicity let us
consider a discrete setting. Let X ∼ P a discrete r.v. with possible outcomes in X = (x1, x2, . . . , x∣X ∣);
the notation X ∼ P means that the probability distribution of X is P . X can be a vector, on any
other type or random object. The Shannon entropy H(X) =H(P ) of the random variable X, or
equivalently of the ensemble EX = (X,X , P ), is defined as7:

H(X) =H(P ) ∶= ∑
x∈X

P (x) ln 1

P (x) =
∣X ∣
∑
i=1
Pi ln

1

Pi

.(7)

It is the expectation with respect to P of the information content h(x) = h(P (x)), or surprise, of
the outcome x of the r.v. X:

h(x) = h(P (x)) ∶= ln 1

P (x) .

If the outcome x has low probability then observing it is quite surprising, and it brings a lot of
information as it was not expected: h(x) is high. If instead P (x) is close to 1 it is not surprising to

7Do not get confused between the H of the Shannon entropy and the calligraphic H used for Hamiltonians later
on.
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observe x, so this outcome brings low information: h(x) is low. Said differently: if the outcome of a
random variable is very probable, it is no surprise (and generally uninteresting) when it happens,
because it was expected. However, if an outcome is unlikely to occur, it is much more informative
if it happens to be observed. The term information content must be understood as a potential
information gain if x is observed. Here the information content and entropy are expressed in “nats”
(for “natural units”), because the logarithm is in natural basis. When using the log2 they are
expressed in “bits”.

Imagine you are in the desert and suddenly it rains like hell. Worst, it rains cows that play piano!
What? It is amazingly surprising no? The probability of this event is actually so low that it brings
an enormous amount of information; in this case it should lead you to the conclusion that you are
dreaming. If instead your are in the desert and its super sunny and hot, it is not surprising at all;
this does not bring more information than what you already know, and if you are dreaming, it is
unlikely that this observation will help you realize it. Another example: the knowledge that some
particular number will not be the winning one of a lottery provides very little information, because
any particular chosen number will almost certainly not win. However, knowledge that a particular
number will win a lottery has high informational value because it communicates the outcome of a
very low probability event.

Be focused here. The entropy can also be interpreted as a measure of unpredictability of X, or
of uninformation/lack of knowledge about what X’s outcome will be: the more surprising are the
outcomes in expectation, the more unpredictable is the actual outcome, which also mean the less
we know about x before observing it. H(X) quantifies the amount of missing information necessary
to determine the outcome of X before observing it. This can be confusing because previously we
said that H(X) is an expected information content, while now we speak about a measure of
uninformation. There is no paradox: an information H(X) is gained in expectation when x is
actually observed. But prior to observing the outcome, H(X) is a measure of uninformation about
it. Put differently: observing the outcome x converts in average H(X) units of uninformation into
information. So it just a matter of conceptually placing ourselves before x is observed –in which
case the interpretation as a measure of uninformation may be more natural–, or after x is observed
–where the interpretation as an expected information content seems to fit better. But at the end
this is the same thing.

An example might help: the outcome of a toss of a fair coin Xfair ∼ Ber(1/2) is much more
unpredictable than the outcome of a strongly biased coin Xbias ∼ Ber(9/10), or equivalently
our lack of knowledge about what will be xfair is higher: we are more uninformed. But when
observing the outcome of the fair coin, we then gain more information than with the unfair
one, because it is in average more surprising. In the first case, which has entropy H(Xfair) of
one bit, betting on one side or the other is the same statistically. While in the second case,
where H(Xbias) = 9

10 log2
10
9 + 1

10 log2 10 ≈ 0.47, the outcome is much more predictable, we are less
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Figure 1. From [4]. Information content (in bits as the logarithm is in base 2) of an
event with probability p. The less probable an outcome is, the greater its information
content. On the right is the binary entropy function H2(p), with its maximum at 1/2.

uninformed (= more informed); it would be an error not to bet on the outcome xbias = 1.

The Shannon entropy H(X) of an ensemble EX ,
or equivalently of the random variable X, quantifies:

i) Its average information content,

i.e., the expected information gain when observing x.

ii) The average uninformation/lack of knowledge

about the outcome x prior to observe it.

iii) Its unpredictability.
The higher the entropy of X, the less “structured” its distribution is.

Finally, if expressed in bits, H(X) is the expected number of binary “yes/no” questions required
to determine the outcome before it is observed, or equivalently, the expected number of binary
questions that the oucome x answered after being observed.

“Good” properties of the entropy. We will mathematically justify, based on Shannon’s
source-coding theorem, that H(X) is indeed the proper definition of information content of X. But
at the moment let us admit it, and give some additional properties that stenghten this claim. Let
X ∼ P .

● H(X) ≥ 0 with equality if and only if Pi = 1 for one i. There is no such thing as negative
information, and a deterministic variable convey no information.
● H(X) is maximized if P is uniform: H(X) ≤ ln ∣X ∣ with equality if and only if Pi = 1

∣X ∣ for

all i.

So the uniform distribution (the less structured of them all) has maximum entropy, while the
trivial distribution giving full weight to a single event has 0 entropy. As the entropy of the uniform
distribution increases with ∣X ∣, casting a die has higher entropy than tossing a coin because each
outcome of a die toss has smaller probability (1/6 to be compared to the 1/2 of the fair coin; each
outcome of a die is more surprising as there are more of them).

Notice another nice property of the information content function h(p) = − lnp. Imagine learning
the outcome x and y of two independent random variables, X and Y . Intuitively, we might want any
measure of the “amount of information gained” to have the property of additivity: for independent
random variables X and Y , the information gained when we learn the outcome of both should



10 J. BARBIER

equal the sum of the information gained if x alone were learned and the information gained if y
alone were learned. And indeed:

● h(x, y) = h(x) + h(y).
● PXY = PX ⊗ PY ⇒ H(X,Y ) =H(X) +H(Y ).

Here

H(X,Y ) =H(PXY ) ∶= ∑
(x,y)∈X×Y

P (x, y) ln 1

P (x, y)

is the entropy of the joint distribution, h(x, y) = h(P (x, y)) = − lnP (x, y). In words, entropy is
additive for independent variables. Define also the conditional entropy of X given Y :

H(X ∣ Y ) ∶= ∑
(x,y)∈X×Y

P (y)P (x ∣ y) ln 1

P (x ∣ y) .

It is equal to the expected information revealed by evaluating the outcome of X given that you
know already the outcome of Y . Or equivalently, it is the remaining amount of unpredictability of
X given that Y has already been observed.

Other important properties of the entropy that confirm its interpretation are:

● The entropy H(X,Y ), i.e., the amount of information revealed by simultaneously evaluating
(X,Y ) equals the information revealed by conducting two consecutive experiments: first
evaluating the value of Y , then revealing the value of X given that you know the value of
Y (or the other way around). This is called the chain rule for entropy :

H(X,Y ) =H(X ∣ Y ) +H(Y ) =H(Y ∣X) +H(X).

● If f is a function then H(f(X) ∣ X) = 0. Applying that to the previous formula yields
H(X) +H(f(X) ∣X) =H(f(X)) +H(X ∣ f(X)), so:

H(f(X)) ≤H(X),

with equality if f is invertible. The entropy may only decrease when X is passed through a
function.
● If X and Y are independent then knowing the value of Y doesn’t influence our knowledge
of the value of X (since the two don’t influence each other by independence):

PXY = PX ⊗ PY ⇒H(X ∣ Y ) =H(X), H(Y ∣X) =H(Y ).

● The entropy of two simultaneous events is no more than the sum of the entropies of each
individual event, and are equal if the two events are independent:

H(X,Y ) ≤H(X) +H(Y ).

● The entropy seen as a function of the probability distribution P is concave: for all P (1) and
P (2) and λ ∈ [0,1],

H(λP (1) + (1 − λ)P (2)) ≥ λH(P (1)) + (1 − λ)H(P (2)).

Note that λP (1) + (1 − λ)P (2) is a probability distribution.
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1.2.2. Entropy from lossy compression: Shannon’s source-coding theorem. We argued that the
entropy is a proper measure of expected information content of a random variable, because it
verifies many properties that are “natural” for an information measure. Is there a more principled
way to show that this is indeed the proper quantity? Yes, through the notion of lossy compression.
In this section we assume that we do not know yet that the proper definition of information content
is the Shannon entropy H(X): this is what we want to prove.

Lossy compression and essential bit content. Consider the ensemble EX = (X,X , P ). One
naive way to quantify its information content is through its raw bit content (here we use directly
the log2 basis to have units in bits)

H0(X) ∶= log2 ∣X ∣.
This is the number of binary variables/bits necessary to code (i.e., map one-to-one) all outcomes
in X to binary strings, that we call codewords; indeed ∣X ∣ = 2H0(X). H0(X) is a lower bound
to the number of binary questions that are always guaranteed to identify an outcome from the
random variable X8. H0(X) is an additive quantity for independent variables, as should be a
proper information content measure. This measure of information content does not include any
probabilistic element, and the encoding rule it corresponds to does not “compress” the source data,
it simply maps each outcome x ∈ X to a constant-length binary string/codeword. To better quantify
information we need somehow to take into account the probabilities of the different outcomes. One
simple way to do so is to simply remove from the alphabet X the less probable outcomes. E.g., one
could remove from in the standard ASCII alphabet the symbols {!,@,#,%,∗,>,<, /, /,, {,}, [, ]};
still you could understand a vast majority of the texts. But when removing symbols from the
original alphabet X , we increase the risk that some outcomes x cannot be described anymore in
the compressed alphabet (or equivalently that multiple outcomes are associated to the same binary
string/codeword, so that there are possible confusions because the mapping is not bijective). The
term “lossy” therefore means that we allow some loss of information. We will see that how much
loss should be allowed is a tricky question.

We introduce the risk δ we are taking when using this compression method: δ is the probability
that there will be no name for an outcome x ∈ X . E.g., X = {a,b, c,d, e, f,g,h}, and PX =
{14 , 14 , 14 , 3

16 ,
1
64 ,

1
64 ,

1
64 ,

1
64}. The raw bit content of this ensemble is 3 bits, corresponding to 23 = 8

binary names/strings. But notice that P (x ∈ {a,b, c,d}) = 15
16 . So if we are willing to run a risk of

δ = 1/16 of not having a name for x, then we can get by with four names {a,b, c,d}; half as many
names as are needed if every x ∈ X is required to have a name. Let us now formalize this idea.

To make a compression strategy with risk δ, we make the smallest possible subset Xδ such that
the probability that x is not in Xδ is less than or equal to δ, i.e., P (x ∉ Xδ) ≤ δ. So the smallest
δ-sufficient subset Xδ is the smallet Xδ ⊆ X satisfying

P (x ∈ Xδ) ≥ 1 − δ.
The subset Xδ can be constructed by ranking the elements of X in order of decreasing probability
and adding successive elements starting from the most probable elements until the total probability
is ≥ 1 − δ. We can then create a data compression code by assigning a binary name to each element

8The raw bit content is related to the microcanonical entropy S(E) = lnZ(E) in the micro-canonical ensemble
of statistical mechanics, where all configurations have same energy E and Z(E) simply counts the number of
configurations with energy E. Expressed in base 2 the micro-canonical entropy of an isolated system is therefore the
number of bits necessary to code all its valid configurations in binary form.
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Figure 2. From [4]. (a) The outcomes of X ranked by probability. (b) The essential
bit content Hδ(X). The labels show the smallest sufficient set as a function of δ.
Note H0(X) = 3 bits and H1/16(X) = 2 bits.

of the smallest sufficient subset. The process we described of defining a new compressed alphabet
in order to describe a random variable is called source-coding, and the new alphabet, here Xδ or
equivalently its binary representation, is called code9. Note that representing Xδ in binary form is
not necessary, it is just sometimes more convenient to think in terms of binary strings. Going from
one representation to another in a bijective way does not change the information content.

For each value of δ we can then define a new measure of information content as the raw bit
content of Xδ: the δ-essential bit content of X is

Hδ(X) ∶= log2 ∣Xδ ∣.(8)

Note that H0(X) is the special case of Hδ(X) with δ = 0 (if P (x) > 0 for all x ∈ X ). This quantity
seems like a sound definition of information content of X: we have compressed X by reducing
its alphabet, allowing a δ-probability of error. If δ is small, the δ-sufficient subset is enough to
describe properly X, so that all elements in Xδ must contain “pure” information, quantified by
the δ-essential bit content Hδ(X). Unfortunately this definition suffers an important caveat: in
general Hδ(X) strongly depends on δ, so how to properly set δ? Which value really selects the
“pure” information? There is not definite answer, see Fig. 2. This is not desirable for a “fundamental”
measure of information.

9The terminology is similar to the one used in communication, i.e., in the noisy channel-coding problem. Note
that in channel-coding we define a code with additional redundancy to increase robustness to the channel noise,
while in source-coding we at contrary try to get rid as much as possible of the redundancy in order to extract the
“pure” (non-redundant) information.
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Figure 3. From [4]. The top 15 strings are samples from Xn, where X ∼ Ber(p).
They all look typical. The bottom two are the most and least probable strings in this
ensemble. The final column shows the log-probabilities of the strings, to be compared
with the entropy H(X100) = 46.9 bits.

Is the notion of compression therefore not appropriate to quantify information content? Actually
it is, but we have change a bit the setting; this is where the genius of Shannon enters into the game.

Source-coding. Instead of just considering the random variable X from the ensemble EX =
(X,X , P ), consider now a source that generates a string of independent outcomes from the
same X: xn = (x1, x2, . . . , xn). This string is therefore the outcome of a random variable Xn =
(X1,X2, . . . ,Xn) ∼ P⊗n taking values in X n, where Xi are independent copies of X. E.g., if X is a
biased coin X ∼ Ber(p), then strings will be made of zeros and ones with, typically, a number np of
ones, see Fig. 3. The motivation in studying this source is that i) its expected information content,
whatever it means, must be n times the one of X alone, because the information content must be
additive for independent variables Xi’s; ii) as n will get larger, simplifications will occur thanks to
the law of large numbers10.

The question then becomes: how much can we compress the random process/string Xn, so that
(almost no) information is lost? Said differently, what is the minimal number of binary symbols
Hδ(Xn) = log2 ∣(X n)δ ∣11 necessary to represent this random string when the risk δ is small? Indeed,
if the random string is maximally compressed up to only a small error probability, then the number
of symbols necessary in the compressed representation sounds like a very reasonable measure of
information content. Because if less symbols than this were used to represent the string, there

10The law of large numbers is responsible for the validity of statistical experiments. Without this law, we could
never verify statistical properties of a system by performing many experiments. In particular, quantum mechanics
would be free of any physical meaning.

11The parentheses are here to emphasize that (Xn)δ is the δ-sufficient subset associated with Xn; this is not
Xδ × . . . ×Xδ = (Xδ)

n.
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Figure 4. From [4]. Convergence of the δ-essential bit content per bit 1
nH(Xn) for

increasing n values, and where X ∼ Ber(p) = 0.1: we clearly observe that 1
nH(Xn)

becomes an increasingly flat function almost independent of δ (except very close to
the border), which constant value tends to H(X) = −0.1 log2 0.1 − 0.9 log2 0.9 ≈ 0.47
bits, except close to the borders δ = 0 or 1.

would be a high risk of making errors and therefore information would be lost. So each symbol
in the compressed form must carry “pure” information. This reasonning applied to X alone is
precisely what lead us to the definition of δ-essential bit content Hδ(X). We’ve seen that this
quantity suffered from its strong dependence in δ. The magic is that as n → +∞, as opposed to
the case n = 1 discussed previously, the maximal compression level of Xn up to some risk δ –and
therefore its δ-essential bit content Hδ(Xn)– will (almost) not depend on δ; this suddenly makes
this object much more attractive as a definition of information content.

Let us now state Shannon’s source coding theorem, that justifies why Shannon entropy is
the proper definition of information content. Remember that at this stage the entropy H(X) =
−∑x∈X P (x) lnP (x) is just a mathematical definition, we did not yet justify its meaning of infor-
mation content; our best candidate at the moment is the δ-essential bit content.

Shannon’s source-coding theorem. Let EX = (X,X , P ) be an ensemble with entropy H(X)
bits (or nats depending of the basis of the log). Let X n ∋ Xn = (X1,X2, . . . ,Xn) ∼ P⊗n. Given
arbitrarily small ε > 0 and any 0 < δ < 1, there exists a positive integer n∗(ε, δ) such that for
n > n∗(ε, δ) the δ-essential bit content of the length-n string Xn verifies

∣ 1
n
Hδ(Xn) −H(X)∣ < ε.

Let us interpret this absolutely fundamental result. As long as we are allowed a tiny probability
of error δ, compression down to nH(X) bits is possible. Even if we are allowed a large probability
of error, we still can compress only down to nH(X) bits. This theorem therefore settles the
question: our best candidate of information content definition 1

nHδ(Xn) = 1
n log2 ∣(X n)δ ∣, which is

the δ-essential bit content per bit, can be made arbitrarily close to H(X) which is independent of δ!
This solves the only problem we had with Hδ, its dependence on δ; as n→ +∞, 1

nHδ(Xn) becomes
independent of δ and tends to H(X), see Fig. 4. Because by construction the random string Xn
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contains in expectation the same information per symbol than X, the expected information content
of X is then indeed given by H(X).

The proof idea is actually simple. The point is that, as n gets larger, by the law of large numbers
almost all outcomes of Xn are typical, so that only the typical sequences need to be encoded during
the compression. Let us consider for simplicity Bernoulli variables X ∼ Ber(p). All typical sequences
have approximately the same number np of ones and n(1 − p) of zeros: the probability that the
outcome is a sequence with exactly R = r ones is a binomial distribution R ∼ Bin(n, p). The relative
fluctuation of R is O(1/√n) so R concentrates onto its mean when n gets large12. This implies that
the only possible outcomes xn are those with R values very close to np: this informally defines the
typical set. The same argument extends to more general (non binary) alphabet. So the probability
of a typical sequence made of nP1 symbols X1, nP2 symbols X2, ect, is

P (xtyp) =
n

∏
i=1
P (xtyp,i) ≈

∣X ∣
∏
j=1
P

nPj

j ∶= Ptyp.(9)

What is the information content/surprise in bits of a typical outcome?

h(xtyp) = log2
1

P (xtyp)
≈ n

∣X ∣
∑
j=1
Pj log2

1

Pj

= nH(X).(10)

So the proof strategy is: i) as n gets large only typical sequences/outcomes are observed; they carry
almost all the probability mass of Xn. So when defining the smallest δ-sufficient subset (X n)δ we
need only to code these typical outcomes; doing so the error probability δ is small. The number
of typical outcomes is exponentially large in n (this follows from the asymptotic equipartition
principle), so even if we allow a risk δ very close to 1 (but independent of n) and therefore only
code a small fraction of the typical sequences, there are still approximately as many at leading
(exponential) order as n get large. So independently of 0 < δ < 1 the number ∣(X n)δ ∣ of typical
sequences to code is the same at leading order. The question becomes: can we count them, i.e.,
evaluate ∣(X n)δ ∣? ii) By definition all typical sequences have approximately the same probability
Ptyp, and they carry almost all the mass, so ∑{typicalxn}P (xn) ≈ #typPtyp ≈ 1, where #typ = ∣(X n)δ ∣
is the number of typical sequences. This implies that there are approximately #typ ≈ 1/Ptyp ≈ 2nH(X)
typical sequences (from (9), (10)); we can thus approximately count them. This allows to estimate
the expected information content per bit as 1

n log2 ∣(X n)δ ∣ ≈ H(X), which is the same as the
expected information content of X by construction of Xn.

Proof of the source-coding theorem. Et voila! □

1.2.3. Mutual information, and I-MMSE formula. Differential entropy and mutual infor-
mation. In a continuous setting one can also define the differential entropy, as did Shannon, by
simply replacing sums with integrals in the entropy definition:

H(X) ∶= ∫ dP (x) ln 1

P (x) .

Unfortunately, since probability density functions can be greater than 1, the differential entropy
loses an important natural properties of information measure: its positivity. E.g., the uniform

12Relative fluctuations of the order O(1/
√
n) of macroscopic quantities like R are typical of complex systems

treated in statistical mechanics. That the relative fluctuations vanish is the reason why such random systems can
be analyzed and described by asymptotically (as n→ +∞) deterministic observables, converging on their ensemble
mean.
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distribution U([0,1/2]) has differential entropy − ln 2. In practice this is not an issue as one can
always conceptually discretize things so all our understanding in the discrete setting remains valid.
The “proper” extension of Shannon entropy to the continuous setting was provided by Jaynes who
defined the notion of limiting density of discrete points which we won’t use. A better behaved
quantity that maintains all its properties when going from discrete to continuous is the mutual
information I(X;Y ) = I(Y ;X) between two random variables. It is defined as the Kullback-Leibler
divergence between their joint distribution and the product of their marginals:

I(X;Y ) ∶= DKL(PXY ∥PX ⊗ PY ) = ∫ dPXY (x, y) ln
PXY (x, y)
PX(x)PY (y)

=H(X) +H(Y ) −H(X,Y )
=H(X,Y ) −H(X ∣ Y ) −H(Y ∣X)
=H(X) −H(X ∣ Y )
=H(Y ) −H(Y ∣X) ≥ 0.

By working with differences of differential entropies, we recover the desirable property, for a measure
of information, of non-negativity in the continuous case. The mutual information is interpreted as a
measure of the mutual dependence of X and Y . It quantifies the “amount of information” obtained
about one random variable through observing the other one. And indeed it cancels if and only if
the variables are independent:

I(X;Y ) = 0⇔ PXY = PX ⊗ PY .

Another important property: for any measurable functions g1 and g2,

I(g1(X); g2(Y )) ≤ I(X;Y ),

with equality if both functions are invertible. This is linked to the data processing inequality :
let X,Y and Z be random variables, where Z may depend on Y only (i.e., PZ∣XY = PZ∣Y ). Said
differently X → Y → Z is a Markov chain. Then

I(X;Z) ≤ I(X;Y ).

This means than no transformation of the data can create information. This inequality is probably
as fundamental as the principle of conservation of energy of isolated systems in physics.

In a inference problem where we want to recover the parameters x from the data y(x) the last
form has a particularly nice interpretation: H(Y ) −H(Y ∣X) is the total information carried by
the data minus the remaining unpredictability/uninformation about the data when the signal is
known, which is therefore the noise contribution. E.g., in a Gaussian denoising model,

y =
√
λx∗ + z ⇒ H(Y ∣X∗) =H(Z) = 1

2
ln(2πe).

The mutual information is thus the information carried by the data purely about the signal. As
such it quantifies the information-theoretic limits of inference, and computing it will be our main
task. In the particular case of the Gaussian denoising model the explicit expression of the mutual
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information reads

I(X∗;Y =
√
λX∗ +Z)

=H(Y ) −H(Z)

= −∫ dydPX(x∗)
e−

1
2
(y−
√
λx∗)2

√
2π

ln∫ dPX(x)
e−

1
2
(y−
√
λx)2

√
2π

− ln(2πe)
2

= −∫ dzdPX(x∗)
e−

z2

2

√
2π

ln∫ dPX(x)
e−

1
2
(
√
λx∗+z−

√
λx)2

√
2π

− ln(2πe)
2

= −E ln∫ dPX(x)eλX
∗x+
√
λZx−λ

2
x2 + 1

2
E[(
√
λX∗ +Z)2] − 1

2
,

which finally gives

I(X∗;
√
λX∗ +Z) = λρ

2
−E ln∫ dPX(x)eλX

∗x+
√
λZx−λ

2
x2

.(11)

The conditional mutual information is defined as

I(X;Y ∣ Z) ∶= EZ DKL(PXY ∣Z∥PX ∣Z ⊗ PY ∣Z)

= ∫ dPXY Z(x, y, z) ln
PXY ∣Z(x, y∣z)

PX ∣Z(x∣z)PY ∣Z(y∣z)
=H(X ∣ Z) +H(Y ∣ Z) −H(X,Y ∣ Z)
=H(X,Z) +H(Y,Z) −H(X,Y,Z) −H(Z)
=H(X ∣ Z) −H(X ∣ Y,Z)
=H(Y ∣ Z) −H(Y ∣X,Z) ≥ 0.

Finally, the chain rule for mutual information (which follows from the definition of the conditional
entropy) reads:

I(X;Y,Z) = I(X;Z) + I(X;Y ∣ Z).

The I-MMSE formula for inference under Gaussian noise. As already mentioned from
the mutual information one can easily deduce at least one error metric: the MMSE (4). Consider
inference of a generic n-dimensional signal x∗, an outcome of X∗ ∼ P , from data corrupted by
Gaussian noise with signal-to-noise ratio λ:

y =
√
λx∗ + z,(12)

where z is the outcome of standard Gaussian vector with identity covariance N (0, In). The I-MMSE
formula linking the mutual information and the (average) MMSE then reads

d

dλ
I(X∗;Y ) = 1

2
MMSE(X∗ ∣ Y )

= 1

2
E∥X∗ − ⟨X⟩∥22 =

1

2
E⟨∥X − ⟨X⟩∥22⟩,(13)

where recall that we distinguish between X ∼ P (⋅ ∣ y) and X∗ the ground-truth signal despite they
play symmetric roles by the Nishimori identity.
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Proof. We have

I(X∗;Y ) =H(Y ) −H(Y ∣X∗) =H(Y ) −H(Z)
with noise contribution H(Z) = n

2 ln(2πe). Let us then compute

d

dλ
H(Y ) = − d

dλ ∫ dP (x∗)dy e
− 1

2
∥y−
√
λx∗∥2

(2π)n/2 ln∫ dP (x)e
− 1

2
∥y−
√
λx∥2

(2π)n/2

= − d
dλ ∫ dP (x∗)dz e

− 1
2
∥z∥2

(2π)n/2 ln∫ dP (x)e
− 1

2
∥z−
√
λ(x−x∗)∥2

(2π)n/2

= 1

2
√
λ
EX∗,Z⟨(Z +

√
λ(X∗ −X)) ⋅ (X∗ −X)⟩,(14)

where the Gibbs-bracket ⟨−⟩ is the expectation acting on replica X with distribution

P (x ∣ y(x∗,z)) = P (x)e− 1
2
∥z−
√
λ(x−x∗)∥2

∫ dP (x′)e−
1
2
∥z−
√
λ(x′−x∗)∥2

.

Now we use a very useful Gaussian integration by part formula, sometimes called Steins’s lemma. It
says that, for any bounded function g ∶ Rn ↦ Rn of a standard Gaussian random vector Z ∼ N (0, In)
we have

E[Z ⋅ g(Z)] = E∇ ⋅ g(Z) = Edivg(Z).
Recall we use the ⋅ notation for the scalar product. This formula applied to a Gibbs-brackets
associated to a general Hamiltonian depending on Gaussian noise yields

E[Z ⋅ ⟨h(X)⟩] = E∇Z ⋅ ∫
dP (x)e−H(x;Z)h(x)
∫ dP (x)e−H(x;Z)

= −E ∫ dP (x)e
−H(x;Z)h(x) ⋅ ∇ZH(x;Z)
∫ dP (x)e−H(x;Z)

+E[∫ dP (x)e
−H(x;Z)h(x)

∫ dP (x)e−H(x;Z)
⋅ ∫ dP (x)e

−H(x;Z)∇ZH(x;Z)
∫ dP (x)e−H(x;Z)

]

= −E⟨h(X) ⋅ ∇ZH(X;Z)⟩ +E[⟨h(X)⟩ ⋅ ⟨∇ZH(X;Z)⟩].

Applied to (14), where the “Hamiltonian” is 1
2∥z −

√
λ(x −x∗)∥2, it gives

d

dλ
H(Y ) = 1

2
E[⟨∥X∗ −X∥2⟩ + 1√

λ
∇Z ⋅ ⟨X∗ −X⟩]

= 1

2
E[⟨∥X∗ −X∥2⟩ − 1√

λ
⟨(X∗ −X) ⋅ (Z +

√
λ(X∗ −X))⟩

+ 1√
λ
⟨(X∗ −X)⟩ ⋅ ⟨Z +

√
λ(X∗ −X)⟩]

= 1

2
E∥X∗ − ⟨X⟩∥2

N= 1

2
E⟨∥X − ⟨X⟩∥22⟩

which is also equal to d
dλI(X∗;Y ), and N stands for “Nishimori”. □
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1.3. Statistical mechanics 101, and links with Bayesian inference. What is statistical
mechanics? A high-level tentative. Statistical physics has been developed in the beginning of
the 20th century in order to describe matter in its various forms, such as solid, fluid or gaseous states.
At the same time was developed another pillar of modern physics13, namely quantum mechanics,
that allows to fully describe the dynamics of atoms and molecules a the microscopic level (through
the Schrödinger equation). So you might wonder: why should we need yet another theory in order
to describe matter if quantum mechanics already does precisely that? That is a fair question. A first
answer is practical: imagine you are interested in describing the precise dynamics of all molecules
of water in a given drop of water. Even if you would have access to a (classical) computer with
a CPU as large as the observable universe, and that could compute for as long as the age of the
universe (13.8 billion years), yet you could not solve the exact equations of quantum mechanics
that, in principle, describe exactly the motion of the molecules (i.e., positions and velocities). And
even assuming you could compute that by solving exactly the Schrödinger equation describing all
the atoms in this drop of water, storing all this information on a physical memory (on a modern
computer memory technology like SSD, or even on a highly optimized medium like DNA) would
require a volume larger than the observable universe; this is doomed14...

A second answer is more “philosophical”: do we really care about knowing the precise motion of
each and every single atom forming the system of interest, like this drop of water? In general the
answer is no. What we care about are macroscopic quantities, i.e., that are “averaged” over the
atoms. For example, what you could be interested in is the density of particles in some medium, or
how “disordered” the atoms are (note that the notion of disorder in meaningless at the single atom
level). This will give you meaningful information about the state of matter: very disordered and of
low density = a gas, still disordered enough and of high density = a fluid, ordered state of high
density = a solid. Another example: a material is magnetic if its magnetization, which measures the
(averaged over the atoms) “alignment” of the spins, is non-zero. Here again we do not care about
the microscopic details of which atom has a upward spin, and which ones are oriented downwards.

What we care about are averaged quantities which describe the system

as a whole, i.e., at a macroscopic level, not microscopic one.

This is also because these are the quantities that can be experimentally measured with an apparatus
(as opposed to single atoms motions which are hard to track): density, temperature, viscosity,
magnetization, concentration etc.

A final answer is summarized by a quote15 from Philip Anderson, winner of the physics nobel
prize in 1977 for his investigations into the electronic structure of magnetic and disordered systems,
which allowed for the development of electronic switching and memory devices in computers:

More is different.

13The three pillars of modern physics are 1) Einstein’s theory of relativity that describes the first (and weaker)
fundamental physical force, namely the gravity; 2) quantum mechanics that describes in a unified way the three
remaining fundamental forces: the electromagnetic force, the strong nuclear force (responsible of the stability of the
atomic nucleus through preventing protons to repeal each other in the atomic nucleus in spite that they have same
electric charge), and the weak nuclear force (responsible of the radioactivity); 3) statistical physics which describes
complex systems.

14Note that the numbers appearing in statistical mechanics are order of magnitudes larger that those appearing
in astrophysics and cosmology. For examples there are typically 1024 molecules of water in a drop of water, that is
one million billion billion of them. Check the definition of the Avogadro number on Wikipedia.

15Actually this is the name of one of its articles.
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This means what it says: complex systems, i.e., systems made of a large number of interacting
components/entities/variables (like the atoms in matter), such as (but not restricted to, as we
will see) solids, fluids or gas cannot be described as a collection of the behaviors of its individual
components. Another way to phrase it is: the whole is more than the sum of its parts. It is impossible
to describe a complex system by first individually analyzing, even very precisely, all its components
and to then try to combine all this knowledge together: a complex system has to be considered as a
whole.

This leads to another fundamental concept:

Emergent phenomena.

Emergence occurs when an entity is observed to have properties its parts do not have on their own.
These properties or behaviors emerge only when the parts interact in a wider whole. You cannot
explain why a solid is what it is (a highly structured system with particular physical properties
like conductivity, resistance to mechanical stress, optical properties etc) from the properties of the
atoms that form it. You cannot understand the dynamics of bird flocks from the understanding of
a single bird behavior. Weather cannot be predicted from the knowledge of single air molecules
dynamics. A financial crisis cannot simply be explained by the behavior of individuals agents. The
success of algorithms to solve complex tasks cannot be reduced to tracking how single bits are
processed. And so on and so forth.

The concept of emergence is intimately linked to another absolutely fundamental concept. Its
understanding and quantification in information processing tasks will be our main goal:

Phase transitions.

A phase transition, which is an emergent phenomenon, is when a complex system experiences a quite
sudden change of certain macroscopic/global properties –called observables– when some external
parameter(s) –called control parameter(s)– is varied (by an external operator, like a physicist in a
lab doing experiments and changing the temperature or the pressure to see how a medium behave,
or a programmer testing its computer code for various parameters). You already know what is
a phase transition, you experience it daily when you cook your pastas: going from a solid state
(i.e., ice) to liquid precisely at 0 degree Celsius (at atmospheric pressure), or from liquid to gas
at 100 degrees, are two of the very many possible phase transitions that occur in nature. In this
case the phase of matter is described by observables like the density and level of ordering of the
atoms, and the control parameter is the temperature. There exist various types of phase transition;
sometimes they are quite smooth (these are called phase transition of the “second order” type),
and sometimes very sharp and discontinuous (of the “first order” type).

Other more “exotic” examples of phase transitions could be: the recovery of a souvenir by the
brain once enough stimuli in the direction of the memorized pattern are provided (a simple model of
associative memory is the hopfield model). Here the observable is the level of recovery of the souvenir
and the control parameter is the amount of stimuli; a crack in the financial market, where suddenly
all prices drop all together; the sudden “rigidity” transition that happens when you randomly pack
enough balls in a box (this is called the “jamming transition”, and this is related to computer
memory optimization or error correcting codes in communication). Or in information processing
tasks: there is a critical noise level in a communication channel above which communication becomes
impossible. This limit is called the Shannon capacity and really is nothing but a phase transition.
The observable here is the quality of recovery of the transmitted signal/information, the control
parameter is the noise (i.e., corruption) level, or the rate of information transmission. A final one.
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Say you want to train an algorithm that, given a large amount of labeled training examples, is
able to distinguish pictures of dogs and cats. There exists a minimum number of training examples
below which, no matter the power of the computer, the algorithm will never be able to properly
classify the images. The observable is the classification performance of the algorithm, the control
parameter is the size of the training set.

“Statistical mechanics” therefore means that we study the motion (i.e., derive the mechanics) of
averaged quantities describing potentially very complex systems, and this thanks to statistics. In
other words:

Statistical mechanics allows to predict macroscopic/global properties of a

complex system from the knowledge of the governing equations at the

microscopic level (i.e., from the local properties of its simple components).

It links the microscopic, overall unpredictable, world

and the macroscopic observable one using statistics.

Here we are interested in “information processing” tasks. This means that the systems of interest are
algorithms dealing with large amount of data. Again, for these processes like for the atoms in a solid,
we are not really interested in the fine details, but more by meaningful averaged “global” quantities
that describe the system at the scale of interest. In information processing, the macroscopic quantity
of interest is often the performance of an algorithm in solving the task it has been designed for.

Equilibrium. A system is at equilibrium when there are no global fluxes and all macroscopic
quantities remain unchanged. Mathematically this implies:

A random complex system is at equilibrium if it explores its allowed

configurations (i.e., microscopic states) following a probability distribution

taking a special form, called “Gibbs-Boltzmann” distribution.

Consider a random system described by the ensemble (X,X n, P (⋅ ;y, β)), where X = (X1, . . . ,Xn)
is a n-dimensional random vector with possible outcomes x = (x1, . . . , xn) ∈ X n. The n-dimensional
vector x is a configuration/microscopic state (i.e., in configuration x its first component, like a
spin or an atomic position in physics, takes value x1, the second x2 and so forth). In physics the
Xi’s are also called degrees of freedom, or spins. The system may also depend on other fixed, or
quenched, parameters y (i.e., that do not fluctuate according to the Gibbs-Boltzmann distribution
defined below). The quenched y are also called disorder.

This random system is at equilibrium if its probability distribution to be observed in the
microscopic configuration x takes the Gibbs-Boltzmann form:

P (X = x;y, β) = P (x;y, β) = exp{−βH(x;y)}
Z(y, β) .(15)

The normalization constant, also called partition function, is

Z(y, β) = ∑
x∈Xn

exp{−βH(x;y)}.(16)

The partition function essentially contains all relevant information about the system. X n is the
ensemble of allowed configurations for the system, the configuration space, such as the positions
for the atoms in a the medium, in which case X n = Rn and the sum in the partition function is
replaced by an integral; or for magnetic materials made of spins X n = {−1,1}n, etc.
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Figure 5. Phase diagram of water in the (Pressure, Temperature) plane, the two
control parameters in this case, with boundaries delimited by phase transitions.

The function H is the Hamiltonian of the system, i.e., its energy/cost function: H(x;y) is
the energy of the system when in microscopic state/configuration x. The Hamiltonian defines
the system. It fully dictates the (random) behavior of the system through the Gibbs-Boltzmann
distribution.

The Gibbs-Boltzmann distribution follows from a maximum entropy principle. It is the solution
of the following constrained optimization problem: Find P such that H(P ) is maximized under
∑x∈Xn P (x) = 1 as well as the fixed average energy constraint ⟨H(X;y)⟩P ∶= ∑x∈Xn P (x)H(x;y) =
E.

Finally β is the inverse temperature and plays the role of Lagrange multiplier in solving the
constraint optimization problem above. Physically speaking, it is a control parameter that allows
to tune the “amount of randomness” in the system. This randomness is, in physical systems, due to
thermal fluctuations, i.e., uncontrolled interactions of the system with the outside world/environment
(also called “thermal bath”). We can see that by looking at the two extremes: when β → +∞
(or equivalently the temperature approaches 0+) then the Gibbs-Boltzmann distribution simply
becomes

lim
β→+∞

P (x;y, β) = 1

Z(y,+∞)1(x ∈ {argminx′H(x′;y)})(17)

where 1(A) is the indicator function. In the zero temperature limit the only allowed configurations
are the ones with minimum energy; these are called ground states. The system is trapped in one of
these ground states forever, it becomes deterministic (“frozen”) as there is not anymore thermal
energy from the outside that can flow in the system to perturb it through thermal fluctuations. In
this case the partition function Z(y,+∞) simply counts the number of ground states. In general,
finding the set of ground states or even a single one is not an easy optimization problem at all.

If instead the temperature diverges, i.e., β → 0+, this probability distribution becomes uniform
over all configurations:

lim
β→0+

P (x;y, β) = 1

Z(y,0) =
1

∣X n∣ .(18)



MEAN-FIELD THEORY OF HIGH-DIMENSIONAL BAYESIAN INFERENCE 23

In this case the partition function tends to the cardinal/volume of the configuration space (that
generally grows exponentially with the number of variables n). Tuning the inverse temperature β
from 0+ to +∞ allows to drive the system from totally random (like a gas at very high temperature,
where atoms essentially never interact) to a purely deterministic one (like water frozen at almost
the absolute zero, where atoms are trapped in an ordered crystalline structure and nothing moves
anymore). In between exists a full phase diagram, which encodes in which macroscopic state –states
described by macroscopic global quantities that are averages over the microscopic configurations–
is the system as a function of external parameters, with boundaries delimited by phase transitions.

A quantity of paramount importance in statistical mechanics is the free energy :

Fn(y) ∶= −
1

nβ
lnZ(y).

This is because from this quantity we can then locate the phase transitions: these are points where
the large n limit of the free energy is non-analytic. From the free energy we can also derive all
relevant macroscopic/global quantities of interest (average energy density, magnetization, etc), by
simply taking derivatives with respect to control parameters (β, external magnetic field, etc). We
will shortly show that this object is, for properly defined models, well behaved in the sense that i)
it is self-averaging, i.e., it concentrates onto its mean:

lim
n→+∞

E[(Fn(Y ) − fn)2] = 0,

where the average free energy, also called quenched free energy, is

fn ∶= EFn(Y ) = −
1

nβ
E lnZ(Y ).

When this is true it justifies an ensemble analysis : instead of considering a particular realization
of the parameters y defining the Hamiltonian of the model, we can average over Y and this will
give the same results. This is the reason why statistical mechanics makes sense. Moreover ii) its
thermodynamic limit exists:

f = lim
n→+∞

fn.

These two points imply that
lim

n→+∞
E[(Fn(Y ) − f)2] = 0,

and therefore convergence in probability: for any ε,

lim
n→+∞

P (∣Fn(Y ) − f ∣ > ε) = 0.

Bayesian inference as a disordered statistical mechanical problem. A posterior
distribution (2) can be written as a Gibbs-Boltzmann distribution with β = 1 and Hamiltonian

H(x;y) = − lnP (x) − lnP (y ∣ x).
The second term above is the log-likelihood. The partition function is then the evidence:

Z(y) = P (y) = ∑
x∈Xn

P (x)P (y ∣ x).

Finally the average free energy is therefore equal to the differential entropy of the data (or Shannon
entropy if the data is discrete) divided by the number of parameters to infer:

fn ∶= −
1

n
E lnZ(Y ) = 1

n ∫ dyZ(y) ln 1

Z(y) =
1

n
H(Y ).(19)



24 J. BARBIER

So we see that statistical physics, and Bayesian inference and information theory are deeply related.
The data y, or equivalently the ground-truth signal and noise x∗, z play the role of quenched
disorder in the statistical mechanics analogy. The mutual information is therefore related to the
free energy through a simple additive term:

1

n
I(X∗;Y ) = 1

n
H(Y ) − 1

n
H(Y ∣X∗) = fn −

1

n
H(Y ∣X∗).(20)

The noise contribution 1
nH(Y ∣ X∗) is generally simple to compute because we often restrict

ourselves to settings where the noise is independent for each data point, so that 1
nH(Y ∣X∗) =

m
nH(Y1 ∣X∗) = m

nH(Z1) where Z1 represents the noise in the process (not necessarily Gaussian),
m is the number of conditionnally (on X∗) independent data points. So the real task is to compute
the entropy density of the evidence 1

nH(Y ), i.e., the free energy exactly like in physics.

2. Information-theoretic limits

In this section we will focus our efforts on establishing the information-theoretic limits of inference
in the Wigner spike model, a simple probabilistic model of principal component analysis. This model
is rich enough so that it contains all features of more complex inference problems, and remains simple
enough to fully analyze it in a finite amount of time. We will study it through the lens of various
advanced mean-field techniques, that all take roots in the statistical mechanics of disordered systems.

Spiked Wigner model. We consider a signal-vector x∗ = (x∗i )ni=1 with bounded components.
Its entries x∗i were drawn i.i.d. from the same prior PX supported, without loss of generality,
on [−1,1] and with second moment ρ. You can keep in mind as a running example the simple
case PX = Ber(ρ) where ρ ∈ (0,1] controls the sparsity of the vector. The symmetric data-matrix
y = (yij)ni,j=1 is obtained through the following generative process, or “observation model”:

yij =
√

λ

n
x∗i x

∗
j + zij, 1 ≤ i < j ≤ n,(21)

where the noise-matrix enries zij are i.i.d. outcomes of a standard Gausian N (0,1) for i < j, with
zij = zji. The inference task is to estimate the rank-one “spike” (x∗i x∗j ) from the data (yij) corrupted
by a Wigner noise matrix (zij). Some applications of the Wigner spiked model include:

● Sparse PCA: In the simplest case the prior PX = Ber(ρ). The task is to estimate the hidden
sparse, low-rank representation x∗ ⊗x∗ (and then ∣x∗∣ by eigenvalue decomposition) of y.
● Submatrix localization: Again PX = Ber(ρ). One has then to extract a submatrix of y of
size ρn × ρn with larger mean.
● Community detection in the Stochastic Block Model: Recovering two communities of size ρn
and (1 − ρ)n in a dense SBM of n vertices is “equivalent” to the spiked Wigner model with

PX = ρδ√(1−ρ)/ρ + (1 − ρ)δ−√ρ/(1−ρ).(22)

● Z/2 synchronization: The prior is Rademacher PX = 1
2δ−1 + 1

2δ1. The task is to determine
the nodes states x∗ ∈ {−1,1}n (up to a global sign) from noisy pairwise products y.

There exists a non-symmetric version called spiked Wishart model :

yij =
√

λ

n
u∗i v

∗
j + zij, i ∈ {1, . . . , n}, j ∈ {1, . . .m = Θ(n)}.
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Some applications of it include

● Sparse PCA/spiked covariance model: The signal is u∗ with PU = Ber(ρ). The matrix v∗

with PV = N (0,1) is then interpreted as a noise matrix. The observations yj, i.e., the
columns of y are then i.i.d. outcomes of

N (0, In +
λ

n
u∗ ⊗u∗).

The goal is to recover the spike u∗ ⊗u∗ of the covariance.
● High-dimensional clustering of m noisy n-dimensional points in k clusters: Consider the
rank-k version of the spiked Wishart model where u∗ ∈ Rn×k, v∗ ∈ Rm×k:

yij =
√

λ

n

k

∑
ℓ=1
u∗iℓv

∗
jℓ + zij.

Then the columns of u∗ are n-dimensional vectors representing centers of k different clusters.
The lines of v∗ are uniform permutations of the k-dimensional vector with a single one
(1, 0, . . . , 0) selecting the cluster to which belong the noisy point yj with j ∈ {1, . . . ,m} (the
columns of y).

In the spiked Wigner model we have very many Θ(n2) observations for reconstructing few
parameters, i.e., Θ(n), but each observation is mostly noise because of the 1/√n scaling. The total
signal-to-noise ratio (SNR) per parameter: #observations ⋅ SNRobs/#parameters to infer, where
SNRobs denotes the SNR per observation, needs to be Θ(1) to make the inference problem not
trivial nor impossible. In the present case we have access to n(n − 1)/2 independent observations
and SNRobs = E[(X1X2)2]λ/n = ρ2λ/n. Therefore we check

n(n−1)
2 × ρ2λ

n

n
= ρ

2λ

2
+O(1/n) = Θ(1).(23)

This explains the presense of the scaling 1/√n in the observation model (21). Note that any other
scaling would make the estimation task either trivial if the total SNR per parameter tends to
infinity, or impossible if it tends to zero.

We suppose that we are in a Bayesian optimal setting where the prior P0 as well as the noise
distribution are known so that the true posterior is known.

P (x ∣ y)∝
n

∏
i=1
PX(xi)

1

(2π)n(n−1)4

exp{ − 1

2
∑

1≤i<j≤n
(yij −

√
λ

n
xixj)

2

}(24)

= 1

Zn(y)
n

∏
i=1
PX(xi) exp{−H(x;y)},(25)
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where, after simplifying all the x-independent terms with the normalization, the Hamiltonian and
partition function are

H(x;y) =∑
i<j
( λ
2n
x2ix

2
j − yij

√
λ

n
xixj)(26)

=∑
i<j
( λ
2n
x2ix

2
j −

λ

n
x∗i x

∗
jxixj −

√
λ

n
zijxixj),

Zn(y) = ∫
n

∏
i=1
dPX(xi) exp{−H(x;y)}.

We used the definition of y = y(x∗,z) to express the Hamiltonian as a function of the independent
variables. Due to these simplifications, you can easily check that the more convenient free energy
expression

fn ∶= −
1

n
E lnZn(Y ) = −

1

n
E lnZn(X∗,Z),

(here we emphasize that we can equivalently express the free energy as a function of the data or of
the independent signal and noise) is related to the Shannon entropy of the data and the mutual
information through

1

n
H(Y ) = fn +

n − 1
4

ln(2πe) + ρ
2λ

4

n − 1
n

,

1

n
I(X∗;Y ) = fn +

ρ2λ

4

n − 1
n

.(27)

Working with this definition of the free energy fn rather than 1
nH(Y ) will slightly simplify

computations. As before, the expectation w.r.t. the posterior is, for any bounded function g,

⟨g(X)⟩ ∶= E[g(X) ∣ y] = ∫ dP (x ∣ y) g(x).

The notation E is the expectation w.r.t. the quenched variables instead. Objects of the form ⟨g(X)⟩
are functions of the quenched variable(s) y, or equivalently x∗, z. We keep the notation X for a
sample from the posterior P (⋅ ∣ y).

Link with the mean-field spin glass, and gauge symmetry in the binary case.
The most studied disordered statistical mechanics model is the mean-field spin glass, also called
Sherrington-Kirkpatrick (SK) model. Let x ∈ {−1,1}n. The Hamiltonian of the SK model reads

HSK(x;z) = − ∑
1≤i<j≤n

1√
n
zijxixj, PSK(x;z) =

e−βHSK(x;z)

ZSK(β,z)
,

where zij are i.i.d. outcomes of a standard Gaussian random variable N (0,1). Notice that this
Hamiltonian is the same as the one of the spiked Wigner model with binary variables (again only
the x-dependent terms are relevant when defining the Hamiltonian):

H(x;y) = −∑
i<j
yij

√
λ

n
xixj = −∑

i<j
(λ
n
x∗i x

∗
j +
√

λ

n
zij)xixj(28)
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when only the noise term is present and λ is set to 1. The additional signal-related term
−∑i<j

λ
nx
∗
i x
∗
jxixj is called planted term, and inference models are planted models. The planted term

plays the role of external magnetic field that tends to align the spins in the signal direction.

Observe that the Hamiltonian of the spiked Wigner model is invariant under the change of
variable yij → yijx∗i x

∗
j and xi → xix∗i , which implies invariance of the associated Gibbs-Boltzmann

distribution and Gibbs-bracket; this change of variable is called a gauge transformation because of
this invariance. Using this gauge transformation it is an exercise to see that the spiked Wigner
model with binary variables x∗i = ±1 is perfectly equivalent, i.e. we have equality of free energy and
of the expectation of any observable, to the spiked Wigner model with x∗i = 1 for all i = 1, . . . , n:

EX∗EY ∣X∗⟨g(Y ,X∗,X(2), . . . ,X(k))⟩
= EY ∣X∗=1⟨g(Y ,X∗ = 1,X(2), . . . ,X(k))⟩

X∗=1

where in the second bracket the signal X∗ is set to the all ones vector. By the Nishimori identity
this is also equal to

⋯ N= EX∗EY ∣X∗⟨g(Y ,X(1),X(2), . . . ,X(k))⟩
= EY ∣X∗=1⟨g(Y ,X(1),X(2), . . . ,X(k))⟩

X∗=1.

The X(a)’s are i.i.d. replicas drawn from the posterior associated with the bracket acting on them.
This implies, e.g.,

EY ∣X∗=1⟨Q(X(1),X(2))⟩
X∗=1

N= EY ∣X∗=1⟨M(X)⟩X∗=1(29)

where the overlap between replicas Q(x(1),x(2)) = 1
n ∑i x

(1)
i x

(2)
i and the magnetization M(x) =

1
n ∑i xi. Again by Nishimori (29) is also equal to the expected overlap with the ground truth (or
between two replicas by the Nishimori identity) in the model with x∗i = ±1

⋯ N= EX∗EY ∣X∗⟨Q(X,X∗)⟩ N= EX∗EY ∣X∗⟨Q(X(1),X(2))⟩.

In the binary case the gauge symmetry therefore allows to remove the dependence in the planted
signal. The planted SK model, i.e., the binary spiked Wigner model, is then equivalent to the
original SK model but with β = 1 and noise that is ferromagnetically biased:

HplantedSK(x; ỹ) = − ∑
1≤i<j≤n

ỹijxixj

where ỹij are now i.i.d. outcomes of N (λn , λn). These observations are due to Nishimori, and the
consequences such as (29) are the “original Nishimori identities”. Identity (5) is the generalization
to models without gauge symmetry. Calling in general m and σ2 the mean and variance of the
quenched interactions zij, in the plan (m,σ2) the line

m = σ2

(when β = 1) is called “Nishimori line”. Spin glass models living on the Nishimori line can always
be re-interpreted as inference problems in the Bayesian optimal setting. For more general inference
problems than ones with a gauge symmetry, the Nishimori line is defined by the parameters
values such that (5) is verified, i.e., such that we are in the Bayesian optimal setting: the assumed
parameters in the posterior match the true parameters used for generating the data.
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Figure 6. Graphical models/factor graphs associated with different inference and
combinatorial optimization problems of a mean-field nature (the two first are dense
models, the two last are sparse/tree-like). Starting from left: the factor graph of
the spiked Wigner model (the factors connected to a single node represent the
independent prior contribution PX(xi) encoding, e.g., the domain of the variable
etc), of high-dimensional linear regression, of the coloring problem, of a low-density
parity-check code.

2.1. Replica symmetric formula for the mutual information. Replica symmetric for-
mula. The main result we will prove is the following asymptotic formula for the mutual information:

Theorem 1 (Replica symmetric formula). Let the signal prior PX be bounded with second moment
ρ. The mutual information for the spiked Wigner model verifies

lim
n→+∞

1

n
I(X∗;Y ) = inf

q∈[0,ρ]
i(RS)(q;λ, ρ),

where, letting X∗ ∼ PX and Z ∼ N (0,1), the replica symmetric potential is

i(RS)(q;λ, ρ) ∶= λ
4
(q − ρ)2 + I(X∗;

√
λqX∗ +Z)

= λ
4
(q2 + ρ2)−E ln∫ dPX(x) exp{λqxX∗ +

√
λqZx − λq

2
x2}.

Decoupling: mean-field interpretation. Looking at this formula something peculiar appears:
the computation of the mutual information of the high-dimensional model (21) has been reduced to
a simple scalar optimization problem. In the replica potential appears the mutual information of a
much simpler inference problem, namely, denoising under Gaussian noise:

y =
√
λq x∗ + z.

Lets us look at the stationary condition of the replica symmetric potential. For any finite λ it is
not difficult to show that the infimum is attained away from the boundaries, so we compute, based
on the I-MMSE formula:

di(RS)(q)
dq

= λ
2
(q − ρ) + λ

2
MMSE(X∗∣

√
λqX∗ +Z).

Cancelling this derivative we obtain the stationary condition:

q = ρ −MMSE(X∗∣
√
λqX∗ +Z) N= E[X∗⟨X⟩q].(30)

We used the consequence (6) of the Nishimori identity. The bracket ⟨−⟩q is the expectation w.r.t.
the measure

PX(x) exp{λqxX∗ +
√
λqZx − λq

2 x
2}

∫ dPX(x′) exp{λqx′X∗ +
√
λqZx′ − λq

2 (x′)2}
.
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Figure 7. Visualization of the decoupling phenomenon happening in the thermo-
dynamic limit: the left model is the original one, the right one is an asymptotically
“equivalent” mean-field model with effective Gaussian factors, with SNR related to
the minimizer q0(λ, ρ) of the replica symmetric potential.

Among the solutions of this self-consistency equation the one minimizing the replica symmetric
potential, denoted q0 = q0(λ, ρ), plays a special role: it is linked to the MMSE as we will see next.
So we see that the best error reachable for high-dimensional PCA collapses to the analysis of the
MMSE of a scalar/decoupled inference problem.

This reduction from a high-dimensional model to a low-dimensonal one is typical of mean-field
models. Mean-field models, for which such dramatic reduction in complexity is possible, usually
belong to one of two possible classes: fully connected models, defined by complete graphical models,
and sparse tree-like graphical models, see Fig. 6.

Minimum mean-square error. As a consequence of the replica symmetric formula for the
mutual information we obtain by application of the I-MMSE identity a simple formula for the
(matrix/spike) MMSE:

Corollary 1 (Minimum mean-square error). Under the same assumptions as in Theorem 1 and
for all (λ, ρ) such that the minimizer of the replica symmetric potential is unique, in which case we
denote this unique minimizer

q0(λ, ρ) ∶= argmin
q∈[0,ρ]

i(RS)(q;λ, ρ),

the spike-MMSE (or matrix-MMSE) verifies:

lim
n→+∞

1

n2
E∥X∗ ⊗X∗ − ⟨X ⊗X⟩∥2F = ρ2 − q0(λ, ρ)2.

Here ⟨X ⊗X⟩ = E[X ⊗X ∣ y] is the spike posterior mean (the MMSE estimator).

Proof. For a sequence of concave functions with a pointwise limit, the limit of the derivative is the
derivative of the limit. Let I ⊂ R and (gn)n≥0 be a sequence of concave functions on I that converge
pointwise to g. Then for any x ∈ I where g′(x) exists we have limn→+∞ g′n(x) = g′(x). Indeed by
concavity

lim
n→+∞

g′n(x) ≥ lim
n→+∞

gn(x + ε) − gn(x)
ε

= g(x + ε) − g(x)
ε

ÐÐ→
ε→0+

g′(x+).

Similarly we obtain limn→+∞ g′n(x) ≤ g′(x−). If g is differentiable at x then g′(x+) = g′(x−) = g′(x),
thus the result.



30 J. BARBIER

Figure 8. Figure from [7]. Plot of the minimum mean-square error given by Corol-
lary 1, the MSE of the approximate message-passing algorithm and of naive PCA for
the spiked Wigner model with prior given by (22).

The sequence of functions we have in mind is the mutual information density 1
nI(X∗;Y ), which

are concave in λ. Indeed by the I-MMSE formula

d

dλ

1

n
I(X∗;Y ) = 1

2n2∑
i<j

E[(X∗i X∗j − ⟨XiXj⟩)2]

= 1

4n2
E∥X∗ ⊗X∗ − ⟨X ⊗X⟩∥2F +O(1/n).(31)

The MMSE is clearly a non-increasing function of the signal-to-noise ratio λ (“information can’t
hurt”), which can also be verified by direct computation. Consider (λ, ρ) so that the minimizer of the
potential is unique: q0 = q0(λ, ρ). By Theorem 1 the mutual information converges to i(RS)(q0;λ, ρ).
It is not difficult to show by direct computation that q0(λ, ρ) ∈ (0, ρ). Therefore it must be that
the q-derivative of i(RS) cancels at q0 = q0(λ, ρ) and thus, using the I-MMSE relation,

lim
n→+∞

d

dλ

1

n
I(X∗;Y ) = d

dλ
i(RS)(q0;λ, ρ)

= ∂

∂λ
i(RS)(q0;λ, ρ)

= (ρ − q0)
2

4
+ q0

2
MMSE(X∗ ∣

√
λq0X

∗ +Z)

= (ρ − q0)
2

4
+ q0

2
(ρ − q0)

= ρ
2 − q20
4

using that q0(λ, ρ) verifies the stationary condition (30). Comparing this result with (31) in the
thermodynamic limit n→ +∞ ends the proof. □

Phase diagram and MMSE. Now that we have a rigorous tool to locate the phase transi-
tions/information theoretic limits, let us plot the phase diagram of PCA.

2.2. A powerful (exact) heuristic: the replica method.
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Figure 9. From [8]. Phase diagram of the spiked Wigner model with Bernoulli
parameters Xi ∼ Ber(ρ) as a function of the sparsity ρ and inverse of the SNR λ (left)
or the inverse of the total SNR given by snr ∶= λρ2 (right), see (23). There is no phase
transition in the system if ρ > 0.04139 and a first order phase transition else. The lower
green curve is the algorithmic phase transition of the approximate message-passing
algorithm, see section 3, that converges to (λalgo)−1 = eρ2. The dashed black line is
the information theoretic threshold. The upper red curve is the dynamical spinodal
where the informative fixed point of state evolution disappears. The orange hashed
zone is the hard region in which AMP is sub-optimal (as any known sub-exponential
complexity algorithm). In the rest of the phase diagram (green hashed) the AMP
provides in the large size limit the Bayesian optimal error.

2.2.1. “Single-letter” derivation. The replica method has been developed for the study of the
thermodynamic properties of disordered statistical mechanical models such as spin glasses. It is
based on one of the following equivalent identities, coined replica trick :

E lnZ(Y )= lim
k→0+

E[Z(Y )k] − 1
k

= lim
k→0+

∂

∂k
lnE[Z(Y )k]= lim

k→0+

lnE[Z(Y )k]
k

where the replicated partition function is

Z(y)k ∶= ∫ dP ({xk
1}) exp{ −

k

∑
a=1
H(xa;y)}

using the notation ∫ dP ({xk
1})⋯ = ∫Rnk∏k

a=1∏n
i=1 dPX(xai )⋯, and where the Hamiltonian is (26).

This is the partition function of k replicas {Rn ∋ xa ∶= x(a) ∶ a = 1, . . . , k} drawn i.i.d. from the
posterior (25) which is ∝ exp{−H(⋅ ;y)}. Choosing your favorite form of the replica trick, the
asymptotic free energy (related to the mutual information by an additive constant) reads

lim
n→+∞

fn = − lim
n→+∞

1

n
E lnZ(Y ) = − lim

n→+∞
lim
k→0+

lnE[Z(Y )k]
nk

.(32)

We therefore compute the moments of the partition function E[Z(Y )k] as if k ∈ N and then we’ll
do an analytic continuation to the reals with k → 0+ and hope for the best.

We compute

E[Z(Y )k] = EX∗EY ∣X∗ ∫ dP ({xk
1}) exp∑

i<j
(Yij
√

λ

n

k

∑
a=1
xai x

a
j −

λ

2n

k

∑
a=1
(xai xaj )2).

We now integrate the quenched Gaussian variables

Yij ∼ N (
√

λ

n
X∗i X

∗
j ,1).
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Using the Gaussian integration formula (also called Hubbard-Stratonovich formula when seen from
right to left)

∫
R
dz exp{−az2 + bz} =

√
π

a
exp

b2

4a

and, letting the sum ∑u,k
a≠b be over {a, b ∈ {u,u + 1, . . . , k} ∶ a ≠ b}, we obtain

E[Z(Y )k] = EX∗ ∫ dP ({xk
1}) exp∑

i<j
{λ
n

k

∑
a=1
xaiX

∗
i x

a
jX
∗
j +

λ

2n

1,k

∑
a≠b
xai x

b
ix

a
jx

b
j}.

Because the prior matches the ground-truth distribution EX∗⋯ = ∫ dP (x∗)⋯. Then, denoting
x∗ = x0 and ∫ dP ({xk

0})⋯ = ∫Rn(k+1)∏k
a=0∏n

i=1 dPX(xai )⋯, the replicated partition function can be
re-expressed as

E[Z(Y )k] = ∫ dP ({xk
0}) exp

λ

2n

0,k

∑
a≠b
∑
i<j
xai x

b
ix

a
jx

b
j

= ∫ dP ({xk
0}) exp

λ

4n

0,k

∑
a≠b
{(

n

∑
i=1
xai x

b
i)

2

−
n

∑
i=1
(xai xbi)2}.(33)

We observe here a direct consequence of the fact that we are considering the problem in the
Bayesian optimal setting (i.e., the posterior is known): the ground-truth plays a perfectly symmetric
role as a replica (i.e., a sample from the posterior), thus the notation x∗ = x0. Averaging the
(random) quenched disorder Y therefore converted a disordered system made of k independent
copies/replicas, each dependent on Y , into a non-disordered system but where the replicas are now
coupled.

From there we use the Hubbard-Stratonovich formula (with a = nλ/4, b = (λ/2)∑i x
a
i x

b
i) in order

to decouple the spins in the “real space” (i.e., we linearize the sums overs i) by introducing coupling
Gaussian fields:

exp
λ

4n

0,k

∑
a≠b
(

n

∑
i=1
xai x

b
i)

2

= (nλ
4π
)

k(k+1)
2

∫
Rk(k+1)

dq exp
0,k

∑
a≠b
{ − nλq

2
ab

4
+ λqab

2

n

∑
i=1
xai x

b
i}.

Therefore the replicated partition function equals

E[Z(Y )k] = (nλ
4π
)

k(k+1)
2

∫ dq exp{ − nλ
4

0,k

∑
a≠b
q2ab}∫ dP ({xk

0})
n

∏
i=1

exp
0,k

∑
a≠b
{λqab

2
xai x

b
i −

λ

4n
(xai xbi)2}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
( ∫Rk+1 dP (x) exp∑0,k

a≠b
{λqab

2
xaxb−Θ(1/n)})n

= ∫ dq exp{ − nSn(q)},

where the Θ(1/n) = λ
4n(xai xbi)2 (recall the prior has finite support so λ

4n(xai xbi)2 vanishes in the large
n limit), and the effective “action” is

Sn(q) ∶= −
k(k + 1)

2n
ln
nλ

4π
+ λ
4

0,k

∑
a≠b
q2ab − ln∫

Rk+1
dP (x) exp

0,k

∑
a≠b
{λqab

2
xaxb −Θ(1/n)}.

We assume that the large n and small k limits in (32) commute:

− lim
n→+∞

lim
k→0+

lnE[Z(Y )k]
nk

= − lim
k→0+

lim
n→+∞

lnE[Z(Y )k]
nk

.
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Then at fixed k (which is still interpreted as an integer at the moment), the large n limit is evaluated
by the Laplace/saddle point method (recall the prior is bounded so the term λ

4n(xaxb)2 in the
action Sn(q) can simply be set to zero)16:

− lim
n→+∞

lnE[Z(Y )k]
nk

=min
q

S(q)
k

where S(q) = limn→+∞ Sn(q). We see that the action is invariant under permutations of lines and
columns of the matrix (qab). This suggests a natural ansatz: the replica symmetric ansatz assumes
that the saddle point lies on the subset17

qab = q for all a ≠ b.
The replica symmetric ansatz therefore simplifies the action to

S(q)
k
∶= (k + 1)λq

2

4
− 1

k
ln∫

Rk+1
dP (x) exp λq

2
{(

k

∑
a=0
xa)

2

−
k

∑
a=0
(xa)2}.

Using once more the Hubbard-Stratonovich formula (with a = 1/2 and b =
√
λq∑k

a=0 x
a) in order to

decouple the spins but this time in the “replica space” (i.e., linearizing the a indices), and letting
Z ∼ N (0,1), we get

S(q)
k
∶= (k+1)λq

2

4
− 1

k
lnE∫

k

∏
a=0
dPX(xa) exp{

√
λqZxa − λq

2
(xa)2}.(34)

The replicas are now decoupled. Let X0 =X∗ ∼ PX . Letting k → 0+,

1

k
lnE∫

k

∏
a=0
dPX(xa) exp{

√
λqZxa − λq

2
(xa)2}

= 1

k
ln∫

dz√
2π
dPX(x0)e−

z2

2
+
√
λqzx0−λq

2
(x0)2(∫ dPX(x)e

√
λqzx−λq

2
x2)

k

= 1

k
ln∫

dz√
2π
dPX(x∗)e−

1
2
(z−
√
λqx∗)2(∫ dPX(x)e

√
λqzx−λq

2
x2)

k

= 1

k
lnE[(∫ dPX(x)e

√
λqZx+λqxX∗−λq

2
x2)

k

]

= E ln∫ dPX(x) exp{
√
λqZx + λqxX∗ − λq

2
x2} +O(k).(35)

We used the change of variable z → z −
√
λqx∗ from third to forth lines, and

1

k
lnE[Uk] = 1

k
lnE exp(k lnU) = 1

k
ln(1 + kE lnU +O(k2)) = E lnU +O(k).

16In a non-planted problem such as the Sherrington-Kirkpatrick model, the minq S(q) would be replaced by a
extrqS(q). This is because as k → 0+ the minima become maxima. But due to the precense of the planted signal,
which is equivalent to a 0-th replica by the Nishimori identity, this does not happen. This is easily seen: e.g., in the
SK model the term corresponding to the one multiplied by k + 1 in expression (34) would instead by multiplied by
k − 1. Therefore the sign would be reversed as k → 0+ which is connected to the swith from minima to maxima.

17More complicated ansatz, associated to a spontaneous breaking of the overlap matrix permutation symmetry,
are called replica symmetry breaking ansatz, and were developed by Giorgio Parisi for the study of the Sherrington-
Kirkpatrick model.
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The simplified action in the limit limk→0+minq
1
kS(q), and therefore the conjectured asymptotic

free energy, reads

lim
n→+∞

fn=min
q
[λq

2

4
−E ln∫ dPX(x) exp{

√
λqZx+λqxX∗−λq

2
x2}].(36)

Adding the missing term ρ2λ/4, as seen from the link (27) between free energy and mutual
information, we (heuristically) recover the expression of Theorem 1 for the mutual information.

2.2.2. “Two-letters” derivation. There exists an alternative derivation by the replica method leading
to a more generic (yet equivalent) variational formula in terms of a two-letters potential.

The derivation is the same until (33). This identity shows that the replicated partition function
depends on the “microscopic configurations” {xa} only through the “macroscopic” overlap order
parameter Qab = Q(xa,xb) ∶= 1

nx
a ⋅xb:

E[Z(Y )k] = ∫ dP ({xk
0}) exp

λn

4

0,k

∑
a≠b
Q(xa,xb)2.

We dropped the sub-dominant λ
4n ∑

0,k
a≠b∑

n
i=1(xai xbi)2 from (33) that plays no role in the large n limit.

The expression above suggests to introduce the multiplicity expΓ(q) of the configurations {xa}
which have a given overlap matrix (Qab) = (qab) through the identity:

expΓ(q) ∶= ∫ dP ({xk
0})

0,k

∏
a≠b
δ(qab −Q(xa,xb)).

So Γ(q) is interpreted as the entropy associated with the configurations with overlap q. We therefore
have the identity

1 = ∫ dq expΓ(q)(37)

= 1

2π ∫Rnk(k+1)
dP ({xk

0})∫
Rk(k+1)

dq∫
iRk(k+1)

dq̂ exp
0,k

∑
a≠b
q̂ab(qab −Q(xa,xb)).

Note that the integral over the q̂ab’s are on the imaginary axis. We used

1 = 1

2π ∫R dx∫iR dx̂ exp{x̂(x − a)} = ∫ dxδ(x).

This identity is at the origin of the formal Fourier represention of the dirac delta function:
δ(x) = 1

2π ∫iR dx̂ exp(x̂x). Note that this can only be used inside an integral over x otherwise the
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integral ∫iR dx̂ exp(x̂x) is not convergent18. We plug (37) in the replicated partition function:

E[Z(Y )k]

=( 1

2π
)
k(k+1)
∫ dP ({xk

0})dqdq̂ exp
0,k

∑
a≠b
{q̂ab(

n

∑
i=1
xai x

b
i − nqab) +

λnq2ab
4
}

=( 1

2π
)
k(k+1)
∫ dqdq̂(exp

0,k

∑
a≠b
{λq

2
ab

4
− q̂abqab}∫

Rk+1
dP (x) exp

0,k

∑
a≠b
q̂abx

axb)
n

= ∫ dqdq̂ exp{ − nSn(q, q̂)}(38)

with effective action

Sn(q, q̂) ∶=
k(k + 1)

n
ln 2π −

0,k

∑
a≠b
{λq

2
ab

4
− q̂abqab}−ln∫ dP (x) exp

0,k

∑
a≠b
q̂abx

axb.

Note that the decoupling in the real space (over the indices i, j) took place automatically as a
consequence of the fixed overlap constraint. As n→ +∞ we evaluate this integral by saddle point
assuming a replica symmetric ansatz for the solution:

qab = q and q̂ab =
q̂

2
for all a ≠ b.

Then the saddle point evaluation gives

− lim
n→+∞

lnE[Z(Y )k]
nk

= extr
q,q̂

S(q, q̂)
k

(39)

where the replica symmetric action is

S(q, q̂)
k

= (k+1)(qq̂
2
−λq

2

4
)− 1
k
ln∫ dP (x) exp q̂

2
{(

k

∑
a=0
xa)

2

−
k

∑
a=0
(xa)2}.

As the integral we estimate by saddle point lives in the complex plane, we need to extremize (not
minimize). The extremization (39) is therefore over q, q̂ ∈ C: the effective action is holomorphic
so the complex integral (38) is deformed, without changing the integral value, in order to pass
through the extremum saddle point.

Let S(q, q̂) = limn→+∞ Sn(q, q̂). In order to decouple the variables in the replica space (indices
a, b) we use the Hubbard-Stratonovich transform with a = 1/2 and b =

√
q̂∑k

a=0 x
a. With Z ∼ N (0, 1)

it yields

S(q, q̂)
k

= (k+1)(qq̂
2
−λq

2

4
)− 1
k
ln∫ dP (x) exp q̂

2
{(

k

∑
a=0
xa)

2

−
k

∑
a=0
(xa)2}

= (k+1)(qq̂
2
−λq

2

4
)− 1
k
lnE∫

k

∏
a=0
dP (xa) exp{

√
q̂Zxa− q̂

2
(xa)2}.

Letting k → 0+ we obtain, by similar manipulations to those leading to (35), that the free energy
given by limk→0+minq,q̂

1
kS(q, q̂) is (here X∗ ∼ PX)

lim
n→+∞

fn = extr
q,q̂
[qq̂
2
−λq

2

4
−E ln∫ dPX(x) exp{

√
q̂Zx + q̂xX∗ − q̂

2
x2}].

18To cure this issue one can regularize this integral using instead the Poisson kernel ηε(x) in the limit ε → 0+,
where ηε(x) ∶= ε/(π(ε

2 + x2)) = 1
2π ∫iR dx̂ exp(x̂x − ∣εx̂∣)
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Let us denote by f (RS)(q, q̂) the two-letters replica symmetric potential, i.e., the function above
inside the bracket [. . .] that is being extremized. The stationary conditions for this function are

d

dq
f (RS)(q, q̂) = 0 ⇒ q̂ = λq.

The second stationary condition gives

d

dq̂
f (RS)(q, q̂) = 0 ⇒ q = 2E⟨ZX

2

1√
q̂
+XX∗ − X

2

2
⟩
q̂

= 2E⟨(X
2

2
− XX

′

2
) +XX∗ − X

2

2
⟩
q̂

N= E⟨XX∗⟩q̂,
where the bracket ⟨−⟩q̂ is w.r.t. the measure ∝ dPX(x) exp{

√
q̂Zx + q̂xX∗ − x2q̂/2}. Plugging the

first stationnary condition in the two-letters potential, one recovers the single-letter potential that
is minimized in (36).

2.3. Why ensembles matter? Concentration of the free energy. In this section we prove
concentration of the free energy, which justifies an ensemble (average) analysis of large probabilisic
models. Because the free energy (or equivalently the entropy and mutual information) concentrates,
computing it for a single large instance of a problem is equivalent to computing it expectation over
the problem ensemble. Therefore the locations of phase transitions and the values of the different
error metrics become asymtpotically independent of the particular problem realization, because
with high probability as n→ +∞ this realization is typical, and the ensemble analysis provides the
typical behavior.

Proposition 1 (Free energy concentration for the spiked Wigner model). There exists C a positive
constant that may depend on everything but n such that

E[( − 1

n
lnZn(Y ) − fn)

2

] ≤ C
n
.

The proof will be based on two classical concentration inequalities, namely:

Proposition 2 (Gaussian Poincaré inequality). Let U = (U1, . . . , UN) be a vector of N independent
standard normal random variables. Let g ∶ RN → R be a continuously differentiable function. Then

Var(g(U)) ≤ E∥∇g(U)∥22.

Proposition 3 (Efron-Stein inequality). Let U ⊂ R, and a function g ∶ UN → R. Let U =
(U1, . . . , UN) be a vector of N independent random variables with law PU that take values in U . Let
U (i) a vector which differs from U only by its i-th component, which is replaced by Ũi drawn from
PU independently of U . Then

Var(g(U)) ≤ 1

2

N

∑
i=1

EUEŨi
[(g(U) − g(U (i)))2].

We start by proving the concentration w.r.t. the Gaussian variables:

Lemma 1 (Concentration w.r.t. the Gaussian noise). We have

E[( − 1

n
lnZn(X∗,Z) + 1

n
EZ lnZn(X∗,Z))

2

] ≤ λ

2n
.
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Proof. The proof is based on Proposition 2. Fix all variables except Z. Let g(z) ∶= − 1
n lnZn(x∗,z)

be the free energy seen as a function of the Gaussian variables only. The free energy gradient w.r.t.
these reads

E∥∇g(Z)∥22 = E
n

∑
i<j
( ∂g
∂Zij

)
2

.

Let us simply denote H ∶= H(x;x∗,z). We then compute (recall the support of the signal [−1,1])

E[( ∂g
∂Zij

)
2

] = 1

n2
E[⟨ ∂H

∂Zij

⟩
2

] = λ

n3
E[⟨XiXj⟩2] ≤

λ

n3
.

Therefore Proposition 2 directly implies the stated result. □

We now consider the fluctuations related to the signal:

Lemma 2 (Concentration w.r.t. the spike). We have

E[( − 1

n
EZ lnZn(X∗,Z) − fn)

2

] ≤ 2

n
.

Proof. The proof uses this time Proposition 3. Let g(X∗) ∶= − 1
nEZ lnZn(X∗,Z). Define X(∗i) as a

vector with same entries as X∗ except the i-th one that is replaced by X̃∗i drawn independently
from PX . Let us estimate (g(X) − g(X(∗i)))2 by interpolation:

E[(g(X∗) − g(X(∗i)))2] = E[(∫
1

0
ds

d

ds
g(sX∗ + (1 − s)X(∗i)))

2

]

= 1

n2
E[(∫

1

0
ds⟨ d

ds
H(sX∗ + (1 − s)X(∗i))⟩)

2

]

= 1

n2
E[(X∗i − X̃∗i )2⟨

1

n
Xi ∑

j(≠i)
X∗jXj⟩

2

]

≤ 2

n2
.

Here H(sX∗ + (1− s)X(∗i)) is the Hamiltonian with X∗ replaced by sX∗ + (1− s)X(∗i). Therefore
Proposition 3 implies the claim. □

2.4. Replica symmetry in inference: overlap concentration. In this section with present
techniques allowing to prove the concentration of the overlap in a general optimal Bayesian inference
setting. This is called replica symmetry in physics and is a key result.

The trick is the usual one of statistical mechanics: add a source term. This mean that we add
in the Hamiltonian a term which derivative will be connected to the object we want to control.
E.g., if the Hamiltonian defining some spin system is H(σ) and you want to know what is the
magnetization mn ∶= 1

n ∑
n
i=1 σi you can add a control parameter (an external field) conjugate to the

magnetization:

H(σ)→ H(σ) + h
n

∑
i=1
σi.

Then a derivative of the free energy w.r.t. the external field around h = 0 allows to compute the
average magnetization:

lim
h→0
− d
dh

1

n
ln∑

σ

e−H(σ)−h∑
n
i=1 σi = lim

h→0

d

dh
fn(h) = lim

h→0
⟨mn⟩h.
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In general, if there are phase transitions, the result may depend on how is taken the limit. E.g.,
in the Curie-Weiss model below the critical temperature the magnetization limh→0⟨mn⟩h will be
positive or negative depending wether the limit is taken from above or below zero. Second derivatives
then provide information about the fluctuations of observables. Here,

1

n

d2

dh2
fn(h) =

1

n

d

dh
⟨mn⟩h = −⟨(m − ⟨m⟩h)2⟩h.

So the free energy with a source term is a moment generating function of the conjugate quantity
to the source: physically, changing a bit a control parameter, i.e., taking a derivative w.r.t. the
external field, allows to probe the conjugate physical observable, here the average magnetization.

Consider the most generic inference channel, with data generated as

y ∼ Pout(⋅ ∣ x∗).
The conditional distribution Pout is a totally general likelihood, and is assumed to be known in
addition of the prior P used to generate the signal x∗ (with bounded components in [−1,1]), so
that we are in the Bayesian optimal setting.

We want to gain information about the MMSE, or equivalently the overlap Q ∶= 1
nx ⋅x∗. Naively

one could just add a source term proportional to it. But the whole proof will strongly relies on
the validity of the Nishimori identity; without it the overlap concentration is not expected to hold
in general. Validity of the Nishimori identity is verified as long as the model we consider is an
inference problem in the Bayesian optimal setting. So the source we add must itseld come from an
inference/observation channel. One possibility is to consider having additional infinitesimal side
information coming from a decoupled Gaussian channel. So the perturbed model is:

{y ∼ Pout(⋅ ∣ x∗),
ỹ =√εx∗ + z̃,

where z̃ is an outcome of N (0, In). The SNR ε ∈ [sn, 2sn] of the side channel is very small as we let
the sequence sn ∈ (0,1/2] vanish with n. Therefore in the large n limit we will recover the original
model. The Hamiltonian for this perturbed model becomes

H(x;y, ỹ) = − lnPout(y ∣ x) +Hpert(x; ỹ),
where the pertubation Hamiltonian is

Hpert(x; ỹ) ∶=
ε

2
∥x∥2 −

√
εx ⋅ ỹ

= ε
2
∥x∥2 − εx ⋅x∗ −

√
εx ⋅ z̃.(40)

We replaced ỹ by its expression. The posterior, partition function and Gibbs-bracket read

P (x ∣ y, ỹ) = e
−H(x;y,ỹ)

Z(y, ỹ) , with Z(y, ỹ) = ∫ dP (x)e−H(x;y,ỹ),

and ⟨g(X)⟩ε ∶= ∫ dP (x ∣ y, ỹ) g(x).

Let

L(x,x∗, z̃) = L ∶= 1

n

d

dε
H(x;y, ỹ) = 1

n
(∥x∥

2

2
−x ⋅x∗ − x ⋅ z̃

2
√
ε
).(41)
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The overlap fluctuations are upper bounded by those of L as

E⟨(Q −E⟨Q⟩ε)2⟩ε ≤ 4E⟨(L −E⟨L⟩ε)
2⟩

ε
.(42)

The point is that as L is linked to the free energy derivatives we will able to control it, and, because
of the Nishimori identity (i.e., that we consider Bayesian optimla inference) we can relate this
natural object L to the one of main interest: the overlap. A detailed derivation can be found in the
appendices and involves only elementary algebra using the Nishimori identity and integrations by
parts w.r.t. the Gaussian noise Z̃i. Therefore this identity is totally generic in optimal Bayesian
inference. The concentration of the overlap is then a direct consequence of the following result
which is general. It applies also away from inference, optimal or not, as this result depends only on
the form of the perturbation (40) and strucural properties of the free energy:

Proposition 4 (Total fluctuations of L). Consider a statistical model described by an Hamiltonian
perturbed by Hpert(x; ỹ) given by (40) where ε ∈ [ε, ε̄] ⊆ [sn, ε̄] a bounded interval and where sn is a
positive vanishing sequence, and that x is bounded. There exist constants Ci > 0 independent of n
s.t.

∫
ε̄

ε
dεE⟨(L −E⟨L⟩ε)2⟩ε ≤ C1(

ε̄ − ε
ns2n
)
1/3
+C2

ln(ε̄/ε)
n

+ C3

n
.

In particular, choosing [ε, ε̄] = [sn,2sn] this implies that there exists a constant C > 0 s.t.

∫
2sn

sn
dεE⟨(L −E⟨L⟩ε)2⟩ε ≤

C

(nsn)1/3
.

Note that this results imposes that sn goes to zero as n−α with 0 < α < 1. This has a physical
meaning: if the perturbation/side-information is too weak the system does not “feel it” so that the
perturbation cannot force the overlap to be self-averaging. The average over a small window of
ε is not an artefact of the proof. Indeed, there might be a (zero-measure) of λ values (and other
parameters of the problem such as ρ etc) where, in the n→ +∞ limit, there are phase transitions.
These precisely manifest by non self-averaging of the physical observables such as the overlap. But
averaging over a vanishing window of ε, which importantly is independent of the other control
parameters like λ, allows to “smoothen” the overlap fluctuations, effectively cancelling the dramatic
effect of possible phase transitions.

The proof of this proposition is broken in two parts, using again the decomposition

E⟨(L −E⟨L⟩ε)2⟩ε = E⟨(L − ⟨L⟩ε)
2⟩

ε
+E[(⟨L⟩ε −E⟨L⟩ε)2].

Thus it suffices to prove the two following lemmas. The first lemma expresses concentration w.r.t.
the posterior distribution (or “thermal fluctuations”) and is a direct consequence of concavity
properties of the average free energy and the Nishimori identity. The second fluctuations are w.r.t.
the quenched disorder.

Let the free energy of this generic pertubed model be, as usual, defined as minus the log-partiton
function:

Fn,ε(y, ỹ) ∶= −
1

n
lnZ(y, ỹ), fn,ε ∶= EFn,ε(Y , Ỹ ).
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We have the following identities: for any given realisation of the quenched variables

dFn,ε(y, ỹ)
dε

= ⟨L⟩ε,(43)

1

n

d2Fn,ε(y, ỹ)
dε2

= −⟨(L − ⟨L⟩ε)2⟩ε +
1

4n2ε3/2
⟨X⟩ε ⋅ z̃ .(44)

Averaging (43) and (44), using a Gaussian integration by parts w.r.t. Z̃i and the Nishimori identity
E⟨XiX∗i ⟩ε = E[⟨Xi⟩2ε] we find

dfn,ε
dε
= E⟨L⟩ε = −

1

2n
E∥⟨X⟩ε∥2 = −

1

2
E⟨Q(X,X∗)⟩ε,(45)

1

n

d2fn,ε
dε2

= −E⟨(L − ⟨L⟩ε)2⟩ε +
1

4n2ε
E⟨∥X − ⟨X⟩ε∥2⟩ε.(46)

The first identity is similar to the I-MMSE formula, except that as we worked with an Hamiltonian
where the x-independent terms have been simplified, it is the overlap instead of the MMSE that
pops out when deriving the free energy w.r.t. the SNR.

Lemma 3 (Thermal fluctuations of L). Consider a statistical model described by an Hamiltonian
perturbed by Hpert(x; ỹ) given by (40) where ε ∈ [ε, ε̄] a bounded interval, and that the prior
distribution P has finite second moment ρ. We have

∫
ε̄

ε
dεE⟨(L − ⟨L⟩ε)2⟩ε ≤

ρ

n
(1 + ln(ε̄/ε)

4
).

Proof. From (46)

E⟨(L − ⟨L⟩ε)2⟩ε = −
1

n

d2fn,ε
dε2

+ 1

4n2ε
E⟨∥X − ⟨X⟩ε∥2⟩ε

≤ − 1
n

d2fn,ε
dε2

+ ρ

4nε
,

where we used nMMSE = E⟨∥X−⟨X⟩ε∥2⟩ε ≤ E⟨∥X∥
2⟩

ε

N= E∥X∗∥2 ∶= nρ. We integrate this inequality
over ε:

∫
ε̄

ε
dεE⟨(L − ⟨L⟩ε)2⟩ε = −

1

n ∫
ε̄

ε
dε
d2fn,ε
dε2

+ ρ

4n ∫
ε̄

ε

dε

ε

= 1

n
(dfn,ε
dε
(ε = ε) − dfn,ε

dRε

(ε = ε̄)) + ρ

4n
ln(ε̄/ε).

From (45) we have ∣dfn,ε/dε∣ = ∣E⟨Q⟩ε/2∣ ≤ ρ/2 so the first term is certainly smaller in absolute value
than ρ/n. This concludes the proof. □

The second lemma expresses the concentration w.r.t. the quenched disorder variables and is
a consequence of the ε-concavity and concentration of the free energy onto its average (w.r.t.
the quenched variables) This idea is to relate the quenched fluctuations of L to the difference
of ε-derivatives of the free energy and its expectation. Now, because the free energy is (almost)
concave in ε, and it concentrates, then its derivatives should concentrate too, which gives the result.

Lemma 4 (Quenched fluctuations of L). Consider a statistical model described by an Hamiltonian
perturbed by Hpert(x; ỹ) given by (40) where ε ∈ [ε, ε̄] ⊆ [sn, ε̄] a bounded interval and where sn is a
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positive vanishing sequence, and that x is bounded. There exist constants Ci > 0 independent of n
s.t.

∫
ε̄

ε
dεE[(⟨L⟩ε −E⟨L⟩ε)2] ≤ C1(

ε̄ − ε
ns2n
)
1/3
+C2

ln(ε̄/ε)
n

.

Proof. Consider the following functions of ε:

F̃ (ε) ∶= Fn,ε +
√
ε

n

n

∑
i=1
∣z̃i∣,

f̃(ε) ∶= E F̃ (ε) = fn,ε +
√
ε

n

n

∑
i=1

E ∣Z̃i∣.(47)

Because of (44) we see that the second derivative of F̃ (ε) is negative (recall the signal components
are bounded by 1) so that it is concave. Note Fn,ε itself is not necessarily concave in ε, although

fn,ε is. Evidently f̃(ε) is concave too. Concavity then allows to use the following lemma:

Lemma 5 (A bound for concave functions). Let G(x) and g(x) be concave functions. Let δ > 0
and define C−δ (x) ∶= g′(x − δ) − g′(x) ≥ 0 and C+δ (x) ∶= g′(x) − g′(x + δ) ≥ 0. Then

∣G′(x) − g′(x)∣ ≤ δ−1 ∑
u∈{x−δ, x, x+δ}

∣G(u) − g(u)∣ +C+δ (x) +C−δ (x).

First, from (47) we have

F̃ (ε) − f̃(ε) = Fn(ε) − fn(ε) +
√
εAn(48)

with An ∶= 1
n ∑

n
i=1(∣z̃i∣ −E ∣Z̃i∣). Second, from (43), (45) we obtain for the ε-derivatives

F̃ ′(ε) − f̃ ′(ε) = ⟨L⟩ε −E⟨L⟩t,ε +
An

2
√
ε
.(49)

From (48) and (49) it is then easy to show that Lemma 5 implies

∣⟨L⟩ε −E⟨L⟩ε∣ ≤ δ−1 ∑
u∈{ε−δ, ε, ε+δ}

(∣Fn(u) − fn(u)∣ + ∣An∣
√
u)

+C+δ (ε) +C−δ (ε) +
∣An∣
2
√
ε

(50)

where C−δ (ε) ∶= f̃ ′(ε − δ) − f̃ ′(ε) ≥ 0 and C+δ (ε) ∶= f̃ ′(ε) − f̃ ′(ε + δ) ≥ 0. Note that δ will be chosen
later on strictly smaller than ε so that ε−δ ≥ ε−δ remains positive. Remark that by independence of
the noise variables E[A2

n] = (1 − 2/π)/n < 1/n. We square the identity (50) and take its expectation.
Then using (∑p

i=1 vi)2 ≤ p∑
p
i=1 v

2
i , and that ε ≤ ε̄, as well as the free energy concentration

1

9
E[(⟨L⟩ε −E⟨L⟩ε)2] ≤

3

nδ2
(C + ε̄ + δ) +C+δ (ε)2 +C−δ (ε)2 +

1

4nε
.(51)

Recall ∣C±δ (ε)∣ = ∣f̃ ′(ε ± δ) − f̃ ′(ε)∣. We have

∣f̃ ′(ε)∣ ≤ 1

2
(ρ + 1√

ε
).(52)

Therefore, as ε ≥ ε,
∣C±δ (ε)∣ ≤ ρ +

1√
ε − δ

≤ ρ + 1√
ε − δ

.



42 J. BARBIER

We reach

∫
ε̄

ε
dε{C+δ (ε)2 +C−δ (ε)2}

≤ (ρ + 1√
ε − δ

)∫
ε̄

ε
dε{C+δ (ε) +C−δ (ε)}

= (ρ + 1√
ε − δ

)[(f̃(ε + δ) − f̃(ε − δ)) + (f̃(ε̄ − δ) − f̃(ε̄ + δ))].

The mean value theorem and (52) imply ∣f̃(ε − δ) − f̃(ε + δ)∣ ≤ δ(ρ + 1√
ε−δ). Therefore

∫
ε̄

ε
dε{C+δ (Rε)2 +C−δ (Rε)2} ≤ 2δ(ρ +

1√
ε − δ

)
2

.

Set δ = δn ≪ sn ≤ ε. Thus, integrating (51) over ε ∈ [ε, ε̄] yields

∫
ε̄

ε
dεE[(⟨L⟩ε −E⟨L⟩t,ε)2]

≤ 27

nδ2n
(ε̄ − ε)(C + ε̄ + δn) + 18δn(ρ +

1√
ε − δn

)
2

+ 9 ln(ε̄/ε)
4n

≤ C(ε̄ − ε)
nδ2n

+ Cδn
sn
+ C ln(ε̄/ε)

n
,

where the constant C is generic, and may change from place to place. Finally we optimize the
bound choosing δ3n = sn(ε̄ − ε)/n. □

2.5. Rigorous approach: the (adaptive) interpolation method. Before entering the proof
let us give the generic roadmap of the adaptive interpolation method, and emphasize the main
differences with the canonical Guerra-Toninelli interpolation method [9–11].

The aim of the method is to prove a variational formula for the thermodynamic limit of the free
energy of some complex statistical model of interacting variables/spins. This variational formula
corresponds to the extremization of a proper potential.

i) The first step consists in defining an “interpolating model” parametrized by “time” t ∈ [0,1].
Its associated t-dependent mutual information i(t) must interpolate between the one of the model
of interest at, say, t = 0, and the one of a properly chosen “decoupled mean-field model” at t = 1
where the variables do not interact anymore and with a tractable mutual information (tractable
because the system is decoupled) which constructs part of the potential. The basic idea is therefore
similar to the canonical interpolation method except that usually the interpolation path depends
“trivially” on t while in the adaptive interpolation method the interpolation path is generic, and is
parametrized by an interpolation function that allows for much more flexibility.

ii) In the second step we want to “compare” the two boundary values using i(0) = i(1)−∫
1

0 dt i
′(t),

where i(0) ≈ 1
nI(X∗;Y ) is what we want to compute while i(1) is a piece of the potential. We

therefore need to compute the t-derivative i′(t). When i′(t) is then plugged in the previous relation
this gives the so-called sum rule, which links the mutual information of interest and the potential
(or part of it).

iii) The third step consists in simplifying the obtained sum rule thanks to the concentration of the
identified order parameter of the problem (the overlap with the planted solution/signal in Bayesian
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inference problems). Self-averaging of the order parameter, refered to as replica symmetry [12], has
to be proven for all t ∈ [0,1]. It requires a proper “perturbation” of the model with a strenght
controlled by a perturbation parameter ε. Perturbing the system allows to “avoid” possible isolated
phase transitions points where concentration does not occur. This step is model-dependent as such
results can be proven only under specific settings. For ferromagnetic models (such as the Curie-Weiss
model) at any temperature, Bayesian inference (in the so-called “Bayesian optimal setting”), or
generic disordered spin models at high temperature this is doable. In the first case thanks to
the ferromagnetic nature of the model (see [13] for a proof that ferromagnetism implies replica
symmetry in full generality), in the second case thanks to the Nishimori identity implying plethora
of sub-identites for the correlation functions of the model, and in the last case by concentration
techniques [14,15]. But away from these settings, e.g., in combinatorial optimization, in generic
disordered spin models at low temperature, or in non-optimal Bayesian inference, this is usually
not possible as replica symmetry breaking may occur [12,14,15] and prevents the order parameter
to concentrate19.

iv) In a fourth step, once the sum rule has been simplified thanks to the order parameter
concentration, the flexibility allowed by the choice of the interpolation functions (i.e., the choice
of the interpolation path) is exploited in order to obtain two matching bounds for the mutual
information. One bound is simply obtained by choosing a “trivial” interpolation path. The other one
requires a smarter choice: it appears that, given the decoupled model towards which we interpolate,
there is a unique choice of the interpolation functions allowing to obtain the converse bound.
This choice corresponds to the solution of a first order differential equation over the interpolation
functions (in which the perturbation parameter ε will play the role of the initial condition). The
interpolation functions have therefore been adapted in order to finish the proof, thus the name of
the method.

2.5.1. The interpolating model. Let ε ∈ [sn,2sn], for some sequence (sn) ∈ (0,1/2)N that tends to
0+ as sn = (1/2)n−α for α > 0. Let qn ∶ [0,1] × [sn,2sn]↦ [0, ρ] and set the interpolating function

Rn(t, ε) ∶= ε + λ ∫
t

0 dt
′ qn(t′, ε).(53)

Consider the following interpolating (n, t,Rn(t, ε))-dependent estimation model, where t ∈ [0,1] is
the interpolation parameter, with accessible data y = y(t) and ỹ = ỹ(t, ε) obtained through

⎧⎪⎪⎨⎪⎪⎩

yij =
√
(1 − t)λn x∗i x∗j + zij, 1 ≤ i < j ≤ n,

ỹ =
√
Rn(t, ε)x∗ + z̃,

where all the z’s are all i.i.d. outcomes of a N (0,1) random variable, with zij = zji. The posterior
associated with this model reads

P (x ∣t,Rn(t, ε),y, ỹ) =
P (x)e−H(x;t,Rn(t,ε),y,ỹ)

Zn(t,Rn(t, ε),y, ỹ)
(54)

19At the moment the adaptive interpolation method is specifically designed for replica symmetric models but it
is an interesting direction to see wether it can tackle more complicated models where replica symmetry breaking
occurs.
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with factorized prior P (x) =∏n
i=1P (xi), and normalization (or partition function) and interpolating

Hamiltonian given by

Zn(t,Rn(t, ε),y, ỹ) ∶= ∫ dP (x)e−H(x;t,Rn(t,ε),y,ỹ)

Hn(x; t,Rn(t, ε),y, ỹ) ∶=
n

∑
i<j
((1 − t)λ

n

x2ix
2
j

2
−
√
(1 − t)λ

n
xixjyij)

+
n

∑
i=1
(Rn(t, ε)

x2i
2
−
√
Rn(t, ε)xiỹi).

We also define the mutual information for the interpolating model:

in(t, ε) ∶=
1

n
I(X∗;Y (t), Ỹ (t, ε)).

The (n, t,Rn(t, ε))-dependent Gibbs-bracket (that we simply denote ⟨−⟩t for the sake of readibility)
is defined as usual for functions A(x) = A:

⟨A⟩t = ⟨A⟩n,t,Rn(t,ε) ∶= ∫ dP (x ∣ t,Rn(t, ε),Y , Ỹ )A(x).

By design of the interpolating model we have:

Lemma 6 (Boundary values). The mutual information for the interpolating model verifies

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

in(0, ε) = 1
nI(X∗;Y (0)) + 1

nI(X∗; Ỹ (0, ε) ∣ Y (0))
= 1

nI(X∗;Y ) +O(sn),
in(1, ε) = 1

nI(X∗; Ỹ (1, ε)) + 1
nI(X∗;Y (1) ∣ Ỹ (1, ε))

= I(X∗;{λ ∫
1

0 dt qn(t, ε)}1/2X∗ +Z) +O(sn).

where I(X∗;{λ ∫
1

0 dt qn(t, ε)}1/2X∗ +Z) is the mutual information for a scalar Gaussian channel
(here X∗ ∼ P , Z ∼ N (0,1)):

y =
√
λ ∫

1

0 dt qn(t, ε)x∗ + z.

Proof. The first equality follows from the chain rule for mutual information. The second one relies
on I(X∗;Y (0)) = I(X∗;Y ) which is obvious, as well as

1

n
I(X∗; Ỹ (0, ε) ∣ Y (0)) = O(sn).(55)

This claim simply follows from the I-MMSE relation and Rn(0, ε) = ε:

d

dε

1

n
I(X∗; Ỹ (0, ε) ∣ Y (0)) = 1

2n
MMSE(X∗ ∣ Ỹ (0, ε),Y (0)) ≤ ρ

2
.(56)

This last inequality is true because MMSE(X∗ ∣ Ỹ (0, ε),Y (0)) ≤ E∥X∗∥2 = nρ, as the components
of X∗ as i.i.d. from P . Therefore 1

nI(X∗; Ỹ (0, ε) ∣ Y (0)) is ρ
2 -Lipschitz in ε ∈ [sn,2sn]. Moreover

I(X∗; Ỹ (0,0) ∣ Y (0)) = 0. This implies the claim (55).
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The third equality follows again from the chain rule for mutual information. The last equality
uses I(X∗;Y (1) ∣ Ỹ (1, ε)) = 0 as Y (1) does not depend on X. Moreover, by decoupling,

1

n
I(X∗; Ỹ (1, ε)) = I(X∗;

√
Rn(1, ε)X∗ +Z)

= I(X∗;{λ ∫
1

0 dt qn(t, ε)}1/2X∗ +Z) +O(sn).
The last step follows from I(X∗;√γX∗ +Z) being a ρ

2 -Lipschitz function of γ, again shown by the
I-MMSE relation as for (56). □

2.5.2. Fundamental sum rule. The core identity of our proof is:

Proposition 5 (Sum rule). The mutual information verifies the following sum rule:

1

n
I(X;Y ) = i(RS)

n (∫
1

0 dt qn(t, ε);λ, ρ) +
λ

4
(R1 −R2 −R3) +O(sn)(57)

with non-negative (n,Rn, ε)-dependent “remainders”
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R1 ∶= ∫
1

0 dt (qn(t, ε) − ∫
1

0 ds qn(s, ε))
2
,

R2 ∶= ∫
1

0 dtE⟨(Q −E⟨Q⟩t)
2⟩

t
,

R3 ∶= ∫
1

0 dt (E⟨Q⟩t − qn(t, ε))
2
.

Proof. We compare the boundaries using the fundamental theorem of calculus

in(0, ε) = in(1, ε) − ∫
1

0
dt
d

dt
in(t, ε).

The t-derivative of the interpolating mutual information is simply computed combining the I-MMSE
relation with the chain rule for derivatives:

d

dt
in(t, ε)

= −λ
2

1

n2∑
i>j

E[(X∗i X∗j − ⟨XjXj⟩t)2] +
λqn(t, ε)

2

1

n
E∥X∗ − ⟨X⟩t∥22

= −λ
4

1

n2
E∥X∗ ⊗X∗ − ⟨X ⊗X⟩t∥2F +

λqn(t, ε)
2

(ρ −E⟨Q⟩t) +O(1/n).

The O(1/n) term comes form completing the diagonal in the sum ∑i>j in order to construct the
matrix-MMSE. The second step used the following identity that we have shown previously in (6)
based on the Nishimori identity:

1

n
E∥X∗ − ⟨X⟩t∥22

N= ρ −E⟨Q⟩t where Q ∶= 1

n
X∗ ⋅X.

By similar manipulations we obtain for the matrix-MMSE

1

n2
E∥X∗ ⊗X∗ − ⟨X ⊗X⟩t∥2F

N= ρ2 −E⟨Q2⟩t.

Combining everything with the boundary values, and once replaced into the fundamental theorem
of calculus we deduce

1

n
I(X∗;Y ) = In(X∗;{λ ∫

1

0 dt qn(t, ε)}1/2X∗ +Z)

+ λ
4 ∫

1

0
dt{ρ2 −E⟨Q2⟩t − 2qn(t, ε)(ρ −E⟨Q⟩t)} +O(sn),
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where the constants in O(sn) are uniform in ε, t, n. Let us re-arrange so that the replica symmetric
potential appears:

1

n
I(X∗;Y ) = i(RS)

n (∫
1

0 dt qn(t, ε);λ, ρ) −
λ

4
{∫

1

0 dt qn(t, ε) − ρ}
2

+ λ
4 ∫

1

0
dt{ρ2 −E⟨Q2⟩t − 2qn(t, ε)(ρ −E⟨Q⟩t)} +O(sn)

which, after a line of basic algebra, finally simplifies to the claimed sum rule. □

2.5.3. Upper bound: “trivial” interpolation path. The replica symmetric formula for the mutual
information follows directly from the two bounds proven below.

Proposition 6 (Upper bound). We have

lim sup
n→+∞

1

n
I(X∗;Y ) ≤ inf

q∈[0,ρ]
i
(RS)
n (q;λ, ρ).

Proof. Fix for all t ∈ [0,1]:
qn(t, ε) = argmin

q∈[0,ρ]
i
(RS)
n (q;λ, ρ).

The interpolation is therefore a simple linear (in time) path. The “interpolation path variance” R1

cancels. The two other remainders R2 and R3 being non-negative we reach the result. □

2.5.4. Lower bound: the adaptive interpolation path. We start with a definition: we say that the
map ε↦ Rn(t, ε) is regular if it is a C1 diffeomorphism whose Jacobian is greater or equal to one
for all t ∈ [0,1].
Proposition 7 (Lower bound). We have

lim inf
n→+∞

1

n
I(X∗;Y ) ≥ inf

q∈[0,ρ]
i
(RS)
n (q;λ, ρ).(58)

Proof. In order to control R2 we need to prove the overlap concentration for the interpolating
model. Looking at section 2.4 we see that in the interpolating model Rn(t, ε) plays the role of ε. So
integrating the overlap fluctuation for the interpolating model R2 over Rn(t, ε) ∈ [sn,2sn] would
allow to show that it is small. But we need Rn(t, ε) to be free in order to choose it smartly later on
in the proof. The perturbation parameter over which we integrate really needs to be ε. First note
that (42) generalizes directly because it only depends on the validity of Nishimori’s identity.

Now let R ∶= Rn(t, sn), R̄ ∶= Rn(t,2sn). From the definition (53) of Rn(t, ε) we have [R, R̄] ⊆
[sn,2sn + λρ]. Using that the map ε ↦ Rn(t, ε) is regular, Proposition 4 combined with Fubini’s
theorem for interverting the t and Rn(t, ε) integrals implies

C1(
sn + λρ
ns2n

)
1/3
+ C2

n
ln

2sn + λρ
sn

+ C3

n

≥ ∫
R̄

R
dRn(t, ε)R2 = ∫

2sn

sn
dε
dRn(t, ε)

dε
R2 ≥ ∫

2sn

sn
dεR2.

Choosing a proper rate of convergence to 0+ of sn the dominating term on the left-hand side is the
first one. We then have that for some constant C ≥ 0

1

sn
∫

2sn

sn
dεR2 =

1

sn
∫

2sn

sn
dε∫

1

0
dtE⟨(Q −E⟨Q⟩t)2⟩t ≤

C

(ns5n)1/3
.
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This bound is uniform in ε. Using this Q-concentration result under the regularity assumption for
the map ε↦ Rn(t, ε) as well as the fact that R1 is non-negative, the sum rule (57), when averaged
over the perturbation, simplifies to

1

n
I(X;Y ) ≥ 1

sn
∫

2sn

sn
dε i

(RS)
n (∫

1

0 dt qn(t, ε);λ, ρ)

− λ
4

1

sn
∫

2sn

sn
dε∫

1

0
dt (E⟨Q⟩t − qn(t, ε))

2 +O( 1

(ns5n)1/3
).

We used that I(X;Y ) is independent of ε. At this stage it is natural to choose qn(t, ε) to be the
solution of

qn(t, ε) = E⟨Q⟩n,t,Rn(t,ε).(59)

Setting Gn(t,Rn(t, ε)) ∶= E⟨Q⟩n,t,Rn(t,ε), we recognize a first order ordinary differential equation

d

dt
Rn(t, ε) = Gn(t,Rn(t, ε)) with initial condition Rn(0, ε) = ε.(60)

So the perturbatio parameter ε actually plays the role of initial condition of the ODE naturally
appearing. As Gn(t,Rn(t, ε)) is C1 with bounded derivative w.r.t. its second argument the Cauchy-
Lipschitz theorem implies that (60) admits a unique global solution

R∗n(t, ε) = ε + ∫
t

0
ds q∗n(s, ε),

where q∗n ∶ [0,1] × [sn,2sn] ↦ [0, ρ] because E⟨Q⟩n,t,ε ∈ [0, ρ] (as seen from (6)). Under the choice
R∗n let us check the regularity assumption that we assumed until now. By Liouville’s formula the
flow ε↦ R∗n(t, ε) satisfies

d

dε
R∗n(t, ε) = exp∫

t

0
ds

d

dR
Gn(s,R)∣

R=R∗n(s,ε)
.

Using repeatedly the Nishimori identity one obtains

d

dR
Gn(s,R) =

1

n

n

∑
i,j=1

E[(⟨xixj⟩n,s,R − ⟨xi⟩n,s,R⟨xj⟩n,s,R)2] ≥ 0

so that the flow has a Jacobian ≥ 1 and is a diffeomophism. Thus ε ↦ R∗n(t, ε) is regular. This
computation does not present any difficulty and can be found in section 6 of [16]. With the choice
R∗n, i.e., by adapting the interpolation path, we have then cancelled the remainder R3. This yields

1

n
I(X;Y ) ≥ 1

sn
∫

2sn

sn
dε i

(RS)
n (∫

1

0 dt q
∗
n(t, ε);λ, ρ) +O(

1

(ns5n)1/3
)

≥ inf
q∈[0,ρ]

i
(RS)
n (q;λ, ρ) +O( 1

(ns5n)1/3
).

Taking the lim infn→+∞ and choosing sn = Θ(n−α) with α ∈ (0,1/5) yields the desired result. □

2.6. A detour in physics: the cavity method for the Curie-Weiss model. The Curie-
Weiss model. The Curie-Weiss model is defined by the following Hamiltonian for binary spins
σ ∈ {−1,1}n living on a complete graph:

Hn(σ) ∶= −
J

n

n

∑
i<j
σiσj − h

n

∑
i=1
σi.(61)
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The Gibbs-Boltzmann measure that describes it random behavior is, as usual,

P (σ) = e−Hn(σ)

∑σ∈{−1,1}n e
−Hn(σ)

.

The temperature has been absorbed in J and h. Its free energy density is defined as (considering
the temperature to be equal to one)

fn =
1

n
Fn ∶= −

1

n
ln ∑

σ∈{−1,1}n
e−H(σ).

We will (partially) prove that its free energy density is given by the following variational formulas

lim
n→∞

fn = inf
m∈[−1,1]

f (RS)(m),

with potential f (RS)(m) ∶= Jm
2

2
− ln (2 cosh[Jm + h]).(62)

The cavity method: Aizenman-Sims-Starr bound. The cavity method allows to prove a
bound for the variational expression (62). It works along the following lines. The free energy can
be constructed by adding one spin after the other, and therefore is equal to the following telescopic
sum:

fn =
1

n

n−1
∑
k=0
(Fk+1 − Fk) ⇒ lim inf

n→∞
fn ≥ lim inf

n→∞
(Fn+1 − Fn).(63)

We therefore aim at computing Fn+1 −Fn, i.e., the free energy cost of adding one spin to the system.
Lets then add one spin σ̃ ∶= σn+1 to the system and “isolate” its contribution in the Hamiltonian
(61):

Hn+1(σ, σ̃) ∶= H̃n(σ) − σ̃(J̃nmn + h),

where the magnetization and rescaled interaction strenght are

mn ∶=
1

n

n

∑
i=1
σi, J̃n ∶= J

n

n + 1 .

Moreover H̃n(σ) is the Hamiltonian of the n spins system with rescaled interaction:

H̃n(σ) ∶= −
J̃n
n

n

∑
i<j
σiσj − h

n

∑
i=1
σi.

The free energy of the n-spins model with rescaled interaction is

F̃n ∶= − ln ∑
σ∈{−1,1}n

e−H̃n(σ).

Let the Gibbs-bracket associated with a generic Hamiltonian H be

⟨A⟩H ∶=
∑σ∈{−1,1}n A(σ)e−H(σ)

∑σ∈{−1,1}n e
−H(σ) .
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We can then write the free energy variation as

Fn+1 − Fn = (Fn+1 − F̃n) − (Fn − F̃n)

= − ln ⟨ ∑
σ̃=±1

eH̃n(σ)−Hn+1(σ,σ̃)⟩
H̃n

+ ln ⟨eH̃n(σ)−Hn(σ)⟩
H̃n

= − ln ⟨ ∑
σ̃=±1

eσ̃(J̃nmn+h)⟩
H̃n

+ ln ⟨e
J̃n
n2 ∑n

i<j σiσj⟩
H̃n

.

Now we use the concentration of the magnetization under the measure ⟨−⟩H̃n
(this step is simple

here because there is no quenched disorder; in disordered models additional steps are needed). This
allows to replace (away from possible phase transition points, i.e., for almost all (J,h))

mn ≈ m̃n ∶= ⟨mn⟩H̃n
∈ [−1,1].

This yields, using 1
n2 ∑n

i<j σiσj = 1
2m

2
n +O(1/n) = 1

2m̃
2
n + on(1),

Fn+1 − Fn = − ln ∑
σ̃=±1

eσ̃(J̃nm̃n+h) + J̃nm̃
2
n

2
+ on(1)

= − ln (2 cosh[Jm̃n + h]) +
Jm̃2

n

2
+ on(1)(64)

as J̃n → J . Therefore we reach the desired bound

lim inf
n→∞

fn ≥ lim inf
n→∞

(Fn+1 − Fn) ≥ inf
m∈[−1,1]

f (RS)(m).(65)

Note that we dit not assume existence of the thermodynamic limit limn→∞ fn. In general settings
this can be hard to prove. It took decades to find how to do for the mean-field spin glass (the
Sherrington-Kirckpatrick model), and the proof gave rise to the interpolation method. When applying
the cavity method, physicists usually assume the existence of the thermodynamic limit, and that it
is given by the limit of free energy difference: f = limn→+∞(Fn+1 − Fn).

Note that we could have instead started from the identity lim supn→∞ fn ≤ lim supn→∞ (Fn+1−Fn)
instead of (63). But we would have been stuck at the end of the proof, because this inequality
does not go in the same direction as the one used when going from (64) to (65), where the latter
inequality’s direction is constrained by the fact that we want to show a variational formula witn an
infimum, not a supremum. So the form of the variational formula fixes the initial bound to start
from. So generally this method allows to rigorously prove a single-sided bound.

3. Algorithmic limits

Until now we have focused on static, ensemble (i.e., typical), properties. Mainly locating the
information theoretic limits/phase transitions and the value of the optimal error we can aim for:
we established the absolute fundamental limits of inference, independently of any algorithm. It is
then natural to ask ourselves: for a given instance of the problem, can we approach these limits
with efficient algorithms? The answer depends on where we are in the phase diagram (i.e., the
parameters values such as the SNR). Let us study one particular algorithm that is special for
a number of reasons that we will see: the approximate message-passing algorithm (AMP). This
algorithm is closely connected to the so-called Thouless-Anderson-Palmer equations (TAP) from
statistical physics, which is a key tool in the study of spin glasses.



50 J. BARBIER

Figure 10. Visualization of the messages flowing on a piece of the factor graph
for the spiked Wigner model with Rademacher variables. Factors are represented by
squares, variable nodes by disks. The hanging factors of conectivity one represent
the prior ψi(xi) = PX(xi) ∝ δxi,1 + δxi,−1. From left to right: the variable node
i receives factor-to-node messages (red) from its connected factors except the j-
th one, i.e., from n − 2 of them. It combines them and spit out a node-to-factor
message mt

i→(ij)(xi) (in blue) to factor (ij) representing the compatibility function

ψ(ij)(xi, xj; yij)∝ P (yij ∣ xixj)∝ exp{yij
√
λ/nxixj}. The factor (ij) then computes

the factor-to-node message m̂t
(ij)→j

(xj) (red) according to the BP rule and send the

result to its next neighbor j. And so forth.

3.1. Message-passing. Let us derive the AMP algorithm for the special case of the planted SK
model, i.e., the components of the signal X∗ are drawn i.i.d. from the Rademacher distribution
(i.e., uniformly in {−1, 1}). The model under study is therefore given by the Hamiltonian (28). This
will lead to great simplifications but, yet, the derivation presented here contains all key ingredients
to then derive AMP algorithm in more generic settings, including other problems than probabilistic
PCA. We defer to the appendices the derivation of AMP for the spiked Wigner model with generic
prior.

Single instance cavity equations: belief propagation . The AMP algorithm is actually a
simplified version of a more primitive algorithm called belief propagation (BP), or the sum-product
algorithm. This algorithm has tons of applications in combinatorial optimization, error-correcting
codes, machine learning etc. It is based on recursive equations over “messages” (also called “beliefs”)
flowing on the edges of the factor graph associated to the model of interest. A factor graph graphically
represents a factorized probability distribution of the form

P (x;θ) = 1

Z(θ)
m

∏
a=1
ψa(xa; θa).

Here ψa(xa; θa) is a factor/compatibility function (a generic positively valued function) depending
on a subset xa = (xa1 , xa2 , . . .) of the variables x, and possible parameter(s) θa. If we use indices
i, j for variable nodes and a, b for factor nodes the BP recursions for the messages are:

Belief propagation: for i = 1, . . . , n and a = 1, . . . ,m:

m̂t
a→i(xi) =

1

Ẑ t
a→i

∫ ψa(xa; θa) ∏
j∈∂a/i

mt
j→a(xj)dxj,

mt+1
i→a(xi) =

1

Z t+1
i→a

∏
b∈∂i/a

m̂t
b→i(xi).
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The notation j ∈ ∂a/i means all variable nodes belonging to the neighbor of (i.e., that share an edge
with) the factor node a, except the i-th one. Similarly b ∈ ∂i/a is the set of factor nodes connected to
variable node i except the a-th one. The “factor-to-node message” m̂t

a→i(xi) represents the current
belief (marginal probability) of variable node i taking value xi at iteration t in a modified factor
graph, called cavity graph, where the node i is connected to factor a only (i.e., ∣∂i∣ − 1 edges of the
original factor graph have been removed, the others remain unchanged). Instead, the “node-to-factor
message” mt

i→a(xi) is the belief of node i taking value xi in a cavity graph where node i is connected
to all its neighbors in the original graph except factor a (a single edge has been removed). The Z’s
are the normalization constants. In writing the update rules, we are assuming that the update is
done in parallel at all the variable nodes, then in parallel at all function nodes and so on. Clearly,
in this case, the iteration number must be incremented either at variable nodes or at factor nodes,
but not necessarily at both. After convergence the true marginals are approximated by m∞i (xi)
where the BP marginal mt

i(xi) combines all factor-to-nodes messages (we use the symbol ∝ to
mean “up to a normalization constant”):

mt
i(xi)∝∏

a∈∂i
m̂t

a→i(xi).

These can then be used for inference by computing, e.g., their mean (for MMSE estimation) or
their argmax (for MAP estimation). Fot t larger than the maximum distance dmax between any
two nodes in the graph, the BP marginals are exact if the factor graph is a tree (has no loops).
This is quite easy to see; to convince yourself you can write the BP equations for a small tree and
update the BP equations for a number of steps t > dmax. Runned on a graph with loops BP (then
called loopy-BP) yields an approximation to the marginals (if it converges), and often comes with
few or no guarantees. But we will see soon that sometimes the situation is more favorable.

For the particular case of the planted SK model the posterior is factorized as

P (x ∣ y) = 1

Z(y)
n

∏
i=1
(δxi,1 + δxi,−1)∏

i<j
exp{yij

√
λ

n
xixj}.

Because the factors ψ(ij)(xi, xj; yij) = exp{yij
√
λ/nxixi} have connectivity 2 we can index them by

(ij) = (ji). The BP equations are then:

Belief propagation for the planted SK model: for i, j = 1, . . . , n:

m̂t
(ij)→i(xi)∝ ∫ dxjm

t
j→(ij)(xj) exp{yij

√
λ

n
xixj},

mt+1
i→(ij)(xi)∝ (δxi,1 + δxi,−1) ∏

k(≠i,j)
m̂t
(ki)→i(xi).

Unfortunately BP is in this case totally inpractical, because there are Θ(n2) messages flowing on
the edges of the densely connected factor graph, and the variables xi may in general be real. So
computationally and memory-wise BP is not an efficient algorithm for inference on dense graphs,
and must be used for sparse graphs instead. As we will see there is a way to overcome these difficulties.

From locally tree-like to dense graphs: approximate message-passing. We said that
BP is exact on trees. It can also be used for sparse factor graphs (i.e., for graphs where the average
connectivity of the variable and factor node does not scale with the number of variables n when it
increases). In sparse graphs loops are typically of size Θ(lnn). Therefore the shortest path between
variables in cavity graphs –where direct connecting edges are removed– are typically scaling as
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Θ(lnn), so locally (i.e., at any finite distance around a root node when n → +∞) the graph is a
tree with high probability. This may imply low correlations between well separated variables and
is the reason why BP may still work, at least until some threshold. But what about dense factor
graphs? E.g., in the one of the spiked Wigner model variables nodes have connectivity n − 1. This
is very far from tree-like graphs... Nevertheless message-passing techniques, in the form of AMP,
still work. The reason is that, like in tree-like graphs, correlations between any two nodes in the
graph are typically small. Even if they are connected by an edge, they are connected to so many
other ones that the influence of one node onto its neighbor is vanishingly small compared to the
global influence of all the other ones. This is the reason why sparse and dense graphs actually both
fall in the class of mean-field models.

Many of the equalities below are valid at leading order. The derivation of the AMP algorithm
then starts from the leap of faith that BP should work on densely connected graphs. The validity
of this assumption will then be rigorously justified through the state evolution analysis. Let us
define the cavity means as the expectation of the messages (we do not write anymore the prior
explicitly but instead simply replace integrals by sums over the binary values of the variables):

bti→(ij) ∶= ∑
x=±1

xmt
i→(ij)(x).

We expand the factor-to-node message in 1/√n:

m̂t
(ij)→i(xi)∝ ∑

xj=±1
mt

j→(ij)(xj){1 + yij
√

λ

n
xixj + o(1/n)}

= 1 + xiyij
√

λ

n
btj→(ij) + o(1/n)

≈ exp{xiB̂t
(ij)→i} where B̂t

(ij)→i ∶=
√

λ

n
yijb

t
j→(ij)

where the o(1/n) is a O(n−3/2). At the first step the next xi-dependent terms were o(1/n) so they

could be dropped safely. B̂t
(ij)→i

is called cavity field, and is an effective field felt by the node i in a

cavity graph where it is only connected to (ij). We plug this in the second BP equation for the
node-to-factor message:

mt+1
i→(ij)(xi)∝ exp{xiBt

i→(ij)} where Bt
i→(ij) ∶= ∑

k(≠i,j)
B̂t
(ki)→i.

Bt
i→(ij) is a cavity field felt by the variable in the cavity graph where it is connected to all but the

(ij) factor. Computing the mean bt+1
i→(ij) of m

t+1
i→(ij)(xi) we obtain closed equations on the cavity

means:

Relaxed belief propagation: for i, j = 1, . . . , n:

bt+1i→(ij) = η(Bt
i→(ij)) = tanhBt

i→(ij), Bt
i→(ij) =

√
λ

n
∑

k(≠i,j)
ykib

t
k→(ik).(66)

The initial value for the the cavity means are random numbers of the order ε≪ 1. This allows to
lower initial bias while breaking the possible all zeros fixed point. The function η is called denoiser
in the AMP terminology. The resulting algorithm is called relaxed BP, as the message passing is
over simple parameters instead of distributions.
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In relaxed BP cavity means are flowing on the factor graph edges, so there are Θ(n2) which
is computationally and memory costly. The next step is to re-express the equations in terms of
marginal means

bti ∶= ∑
x=±1

xmt
i(x).

The AMP marginal means approximate the true means/magnetizations of the variables. We obtain
similarly as before

bt+1i = η(Bt
i), Bt

i =
√

λ

n
∑
k(≠i)

ykib
t
k→(ik).(67)

We expand the cavity mean

btk→(ik) = η(
√

λ

n
∑
ℓ(≠k)

yℓkb
t−1
ℓ→(ℓk) −

√
λ

n
yikb

t−1
i→(ik))

= η(Bt−1
k ) −

√
λ

n
yikb

t−1
i→(ik)η

′(Bt−1
k ) +O(1/n)

= btk −
√

λ

n
yikb

t−1
i→(ik)(1 − (btk)2) +O(1/n)(68)

= btk −
√

λ

n
yikb

t−1
i (1 − (btk)2) +O(1/n).

We used η′(Bt−1
k ) = 1 − η(Bt−1

k )2 = 1 − (btk)2, as well as (68) yielding

bt−1i→(ik) = bt−1i +O(1/
√
n)(69)

that we used in the last step. Plugging this back in (67) we close the equations on the marginal
means and get at leading order:

Approximate message-passing: for i = 1, . . . , n:

bt+1i = η(Ct
i), Ct

i =
√

λ

n
∑
k(≠i)

ykib
t
k −

λbt−1i

n
∑
k(≠i)

y2ki(1 − (btk)2).(70)

Again the initialization is random times a small constant ε≪ 1. At each step the rank-one spike is
estimated as

bt+1 ⊗ bt+1 = (bt+1i bt+1j ).
The AMP algorithm, that is equivalent to BP at leading order, iterates only n quantities instead of
Θ(n2) which is computationally and memory-wise much more efficient. When the signal components
are drawn from a generic prior PX rather than Rademacher the messages cannot be parametrized
anymore by their mean only. The messages variances has to be tracked as well. We derive this more
general AMP as well as its asymptotic analysis in the appendix.

The fixed point equations associated with AMP in the case of yij being outcomes of a standard
Gaussian are the so-called Thouless-Anderson-Palmer self-consistency equations for the magnetiza-
tions of the SK model (without external field; just add the external field value h to the argument



54 J. BARBIER

of the tanh below if it is present):

Thouless-Anderson-Palmer equations: for i = 1, . . . , n:

bi = tanh (
1√
n
∑
k(≠i)

ykibk −
bi
n
∑
k(≠i)

y2ki(1 − b2k)).

Note that the time indices combinaison is non-trivial in AMP. Any other combinaison will lead to
convergence issues. One cannot simply start from the TAP equations and index by t + 1 on the left
of the equality and t on the right. The term

−λb
t−1
i

n
∑
k(≠i)

y2ki(1 − (btk)2)

in AMP (or the similar one without time indices in the TAP equations) is called Onsager reaction
term. This term with the proper time indices is absolutely crucial for the convergence of AMP and
makes all the diffeence between AMP (or TAP) and the “naive mean-field” algorithm/equations:

Naive mean-field: for i = 1, . . . , n:

bt+1i = η(
√

λ

n
∑
k(≠i)

ykib
t
k), bi = η(

√
λ

n
∑
k(≠i)

ykibk).

3.2. State evolution, and optimality of AMP. We will now heuristically show that due to
the presence of the Onsager reaction term, the fields (Ct

i) in AMP asymptotically behave as
independent Gaussian random variables. This will permit us to compute their distribution and as a
consequence to track AMP’s performance using the state evolution analysis. In order to understand
the mechanism behind state evolution, it is easier to first gain some intuition on what happens on
locally tree-like graphs for which BP has originally been formulated.

Asymptotic analysis of belief propagation: density evolution. We consider that the
graph is an instance of an ensemble of large locally tree-like graphs with loops of typical size at least
Θ(lnn) with high probability as n→ +∞ (this is the case, e.g., for sparse regular or Erdoes-Renyi
random graphs). We analyze the plain belief propagation algorithm. Density evolution is then a
statistical analysis of the messages distributions. It assumes:

● The number of iterations t is fixed while the number of variables n → +∞. Therefore, as
a consequence of the locally tree-like structure the t-radius neighborhood of a root node
drawn at random is a tree with probability 1.
● The BP messages are initialized independently.

Under these assumptions you can convince yourself that two messages selected randomly in the
graph that are iterated through the BP algorithm are independent with probability one. Indeed, a
message (of any of the two types) associated with a root node can only depend after t iterations on
the messages associated with nodes that are at a distance lower than t + 1 along the directed tree
starting at this root. Because t/n→ 0 the claim follows. This implies the following distributional
equations, coined density evolution (as they track the density of messages in the limit n→ +∞ and
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t ≤ T finite):

Density evolution: for t = 1, . . . , T :
⎧⎪⎪⎨⎪⎪⎩

m̂t d= Ψ̂f→n((mt
j)

αf−1
j=1 , ψ),

mt+1 d= Ψn→f((m̂t
b)

αv−1
b=1 ).

Here the (mt
j) are i.i.d. copies of the random message/distribution mt, and (m̂t

b) i.i.d. copies of
m̂t. The functional Ψ̂f→n represents the first BP update rule for factor-to-nodes messages, Ψn→f

the BP update rule for the node-to-factor messages. ψ is a random factor/compatibility function
distributed as the ones in the problem under study. E.g., in the planted SK model a random factor

takes the form exp{(λ/n)X∗1X∗2x1x2 + Z
√
λ/nx1x2} with X∗1 ,X∗2 drawn independently from PX

and Z a standard Gaussian, x1 and x2 the arguments of the random messages mt
1 and mt

2 entering

in Ψ̂f→n. The random variables αf and αv have distributions corresponding respectively to the
ones of the factor nodes connectivity, and variable nodes connectivity. These take care of the graph
randomness. For the spiked Wigner model they are deterministically equal to αf = 2 and αv = n− 2;
in sparse random graphs they are generally random variables with, e.g., a Poisson distribution in
the case of sparse Erdoes-Renyi graphs.

The density evolution distributional equations can be solved by population dynamics, where
large populations of messages are kept in memory and randomly updated through the density
evolution rule. The empirical expectation of the messages over the population approximates the
true message densities. If a given graph instance drawn from the ensemble under study is very
large (and therefore typical with high propability) compared to the number of BP updates, density
evolution should accurately predict the empirical distribution of BP messages for this particular
instance by the law of large numbers. See [1, 3, 17] for knowing more.

Asymptotic analysis of approximate message-passing: state evolution. We will
actually analyze the relaxed BP algorithm (66) which is equivalent to AMP at leading order, in
the sense that its approximation (67) for the marginal means are asymptotically the same as the
AMP estimates.

For the state evolution asymptotic analysis of relaxed BP/AMP over dense graphs, we assume
similarly as in the density evolution analysis that t/n → 0 in the thermodynamic limit n → +∞
and that the cavity means are initialized independently. But why would this imply independence
of the cavity means, as in a dense graph any two nodes are essentially at distance 1? In order
to heuristically estimate the dependence between two given cavity means bt

i→(ij) and b
t
k→(kℓ) we

approximately count the number of directed paths of lenght at most t that are starting from
node i and passing at least once through node k. It is only through such paths that information
may flow, and therefore create correlations, between the two cavity means. We assume that the
denoiser η is Lipschitz with finite Lipschitz constant and that all paths have statistically the same
weight/influence; the weights are related to the observations which are statistically equivalent.
Let us use a probabilistic argument rather than combinatorial. The probability that a uniformly
sampled path of lenght t with initial node i avoid node k is (n−2n−1)t ≈ exp{−t/(n − 1)} when n≫ 1.
So the probability that it crosses node k at least once is approximately 1 − exp{−t/(n − 1)} which
tends to t/n if n≫ t. So if we were excluding all these computation paths in the iterations of the
relaxed BP iterations in order to make the two cavity means strictly independent, because η is
Lipschitz this would have an impact of O(t/n) on the value of bt

k→(kℓ). Therefore different cavity
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means are asymptotically independent as n → +∞ and t fixed. By the same argument a cavity
mean bt

i→(ij) at any fixed time t is asymptotically independent of the observation ykℓ (and therefore

of zkℓ) for all (kℓ) ≠ (ij). This is because information about ykℓ can only reach bt
i→(ij) through this

vanishing fraction of correlating paths. Recall also that the cavity mean bt
i→(ij) is a marginal mean

in a cavity graph where factor (ij) is not present, so bt
i→(ij) is also supposed independent of yij (and

therefore of zij). It might seem paradoxal that the cavity means are overall independent of all data,
but all this reasonning is only true at leading order. Dependencies appear only at lower order which
simplifies a lot the analyis. Note that if t is comparable to n or larger all the argument collapses
and cavity means become strongly dependent, thus the assumption of the state evolution analysis.

Let us now use the cavity means independence assumption to derive the state evolution recur-
sion. The observations (yik) are independent conditionally on the signal x∗ because the noise is
independent for each observations. At fixed x∗ the BP cavity field Bt

i→(ij) is therefore a sum of

(asymptotically) independent terms. By the central limit theorem it tends to a Gaussian random
variable. We compute its conditional mean (all that at leading order):

EY ∣x∗B
t
i→(ij) = EY ∣x∗

√
λ

n
∑

k(≠i,j)
Ykib

t
k→(ik)

= ∑
k(≠i,j)

EZ[
λ

n
x∗i x

∗
kb

t
k→(ik) +

√
λ

n
Zikb

t
k→(ik)]

= λx∗i
1

n
∑
k

x∗kb
t
k +O(1/

√
n)

= λx∗iQ(x∗,bt) +O(1/
√
n).

Recall that at leading order cavity means are independent between themselves and of the data. We
used for the third step (69) that reads bt

k→(ik) = btk +O(1/
√
n). The independence assumption of the

cavity means implies that the cavity fields

Bt
i→(ij) = η−1(bt+1i→(ij))

are also pairwise independent (one can also explicitely compute the covariance CovZ(Bt
i→(ij),B

t
k→(kℓ))

and see it vanishes). We therefore need only to compute their variances, which is simply the sum of
variances of each individual terms in the sum defining Bt

i→(ij) by independence:

VarZ B
t
i→(ij) = ∑

k(≠i,j)
VarZ[

λ

n
x∗i x

∗
kb

t
k→(ik) +

√
λ

n
Zikb

t
k→(ik)]

= λ
n
∑

k(≠i,j)
(btk→(ik))2

= λ
n

n

∑
k=1
(btk)2 +O(1/n)

= λQ(bt,bt) +O(1/n).
We conclude that at leading order the cavity fields, and therefore the fields (Bt

i) in (67) and (Ct
i)

in AMP (70), are independent Gaussian variables:

Bt
i→(ij) ≈ Bt

i ≈ Ct
i ∼ N (λQ(x∗,bt)x∗i , λQ(bt,bt)),
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Figure 11. Figure from [18]. The solid curves are the state evolution prediction of
the asymptotic spike-MSE of AMP limt→∞ limn→∞MSEt

AMP for different SNR values
λ. The crosses mark median MSE incurred by AMP in 100 Monte Carlo runs with
n = 2000 for the spiked Wigner model with Xi ∼ Ber(ε). In this case there is no hard
phase and AMP is always Bayes optimal.

Figure 12. Figure from [8]. Comparison between the state evolution and the fixed
point of the Low-RAMP algorithm, for the spiked Gauss-Bernoulli model of sparse
PCA with rank one and sparsity ρ = 0.1. The phase transitions stemming from state
evolution are 1/λalgo = 0.01, 1/λIT = 0.0153, and 1/λdyn = 0.0161. The points are the
fixed points of the AMP algorithm run on one typical instance of the problem of
size n = 20000. Blue pluses are the MSE reached from an uninformative initialization
q0 = ε ≪ 1. Green crosses are the MSE reached from the informative initialization
q0 = ρ.

so the AMP marginal means are asymptotically independent and distributed as

bt+1i ∼ η(λQ(x∗,bt)x∗i +
√
λQ(bt,bt)Zi)
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with (Zi) are i.i.d. standard Gaussian random variables. This implies

1

n

n

∑
i=1
bt+1i x∗i ∶= Q(x∗,bt+1) =

1

n

n

∑
i=1
η(λQ(x∗,bt)x∗i +

√
λQ(bt,bt)Zi)x∗i ,

1

n

n

∑
i=1
(bt+1i )2 ∶= Q(bt+1,bt+1) =

1

n

n

∑
i=1
η(λQ(x∗,bt)x∗i +

√
λQ(bt,bt)Zi)

2
.

By the independence assumptions and the law of large numbers the “magnetization” Q(x∗,bt)
must concentrate onto its asymptotic expected value qt∗ and the overlap Q(bt,bt) onto qt as n→ +∞
and with high probability. The limit overlap sequences are therefore solutions of the state evolution
recursions. Let X∗ ∼ PX , Z ∼ N (0,1).

State evolution: let q0∗ = q0 = ε≪ 1. For t ∈ N≥0:

{q
t+1
∗ = E[η(λqt∗X∗ +

√
λqtZ)X∗],

qt+1 = E[η(λqt∗X∗ +
√
λqtZ)2].

The initialization q0∗ = q0 = ε is called non-informative. It corresponds to no a priori information
about the signal. Having ε > 0 allows to break a possible trivial fixed-point qt = 0 that may appear
due to the ± global symmetry in the problem (the data y is invariant by a global sign change of x∗).
This trivial fixed point may prevent state evolution to start. Running AMP on any real problem,
this fixed point is always spontaneously broken by random fluctuations20.

By the law of large numbers one can then track functions of the AMP fields. With high probability,

lim
n→+∞

1

n

n

∑
i=1
ϕ(bt+1i , x∗i ) = Eϕ(η(λqt∗X∗ +

√
λqtZ),X∗).

When the denoiser is the MMSE denoiser (i.e. the assumed λ matches the true SNR in the model
and the prior is known), i.e., in the planted SK model,

η(B) = ∑x=±1 x exp{xB}
∑x=±1 exp{xB}

= tanhB ∶= ⟨X⟩B,

then η(λx∗qt∗ + z
√
λqt) is the posterior expectation for a scalar Gaussian channel y = λqt∗x∗ +

√
λqtz

which is, not by coincidence, similar to the denoising model appearing in the replica symmetric
potential. Therefore the Nishimori identity implies

E[η(λqt∗X∗ +
√
λqtZ)X∗] = E[η(λqt∗X∗ +

√
λqtZ)2].

State evolution in the Bayesian optimal setting therefore simplifies to a recursion over a single
parameter:

State evolution (Bayesian optimal setting): let q0 = ε≪ 1. For t ∈ N≥0:
qt+1 = E[η(λqtX∗ +

√
λqtZ)X∗].

This implies that almost surely

lim
n→+∞

1

n

n

∑
i=1
ϕ(bt+1i , x∗i ) = Eϕ(η(λqtX∗ +

√
λqtZ),X∗).

Note that the fixed point equation associated with state evolution corresponds to the stationary
condition (30) of the replica symmetric potential. This emphasizes a deep link between the potential

20There is now a more principled way to remove the possible trivial fixed point of state evolution, which corresponds
to a spectral initialization of the AMP cavity means, see [19].
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Figure 13. Figure from [7]. Plot of the free-energy single-letter potential f (RS)(q;λ)
as a function of q for different SNR values λ. The porential f (RS)(q;λ) is the function
minimized in (36). Left (easy phase): The SNR is above the algorithmic threshold
λalgo = 1, so AMP yields allows optimal estimation with a MMSE equal to ρ2 − q20,
where q0 is the global minimizer of the potential. Optimal estimation being possible
at low computational cost this regime is called easy. Middle (hard phase): Below
the algorithmic threshold state evolution initialized from qt=0 = 0 will remain trapped
in the local minimizer of the potential. AMP (as any known efficient algorithm) is
therefore sub-optimal. This defines the hard phase. Right (impossible phase):
Finally for very low SNR even the MMSE is high (q0 is low), so inference is impossible
for all algorithms (efficient or not).

function i(RS), related to the static/thermodynamic properties of the model, and the state evolution
related to the dynamic properties of an algorithm.

All this analysis can be turned onto a theorem thanks to the conditionning technique developed
by Bolthausen for the SK model, and then adapted by Bayati and Montanari for high dimensional
regression with random features, followed by Rangan et al. for spiked matrix models.

MSE optimality of AMP. The spike-MSE of AMP is

MSEt
AMP ∶=

1

n2
∥x∗ ⊗x∗ − bt ⊗ bt∥2F =

1

n2
(∥x∗∥42 + ∥bt∥42 − 2(x∗ ⋅ bt)2).

Using state evolution and the independence of the parameters x∗i we have almost surely (recall
ρ ∶= EPX

[(X∗)2])
lim

n→+∞
MSEt

AMP = ρ2 + (qt)2 − 2(qt∗)2

which becomes, in the Bayesian optimal setting,

lim
n→+∞

MSEt
AMP = ρ2 − (qt)2.

Comparing this formula with the MMSE formula of Corollary 1, we can assert: whenever the
fixed point q∞ of state evolution reached from the non-informative initialization matches the global
minimizer q0(λ, ρ) of the replica symmetric potential, then AMP is optimal in the sense that its
estimate b∞ ⊗ b∞ of the spike almost surely leads to the spike-MMSE in the limit n→ +∞:

If q0 = ε and q∞ = q0(λ, ρ)
then lim

t→+∞
lim
n→∞

MSEt
AMP = lim

n→∞
MMSE(X∗ ⊗X∗ ∣ Y ).

As a consequence we can simply predict the asymptotic performance of AMP by plotting the
replica symmetric potential, see Fig 13. The high SNR region where the potential has a single
minimum at high q corresponds to the easy phase: there exists a polynomial complexity algorithm,
AMP, that matches the optimal performance. When a second local minimum exists at low q



60 J. BARBIER

state evolution will find the corresponding fixed point and remain stuck there. AMP is therefore
sub-optimal as any known algorithm. This defines the hard phase, associated with a computational-
to-statistical gap. The entrance in the hard phase happens at the so-called algorithmic (or dynamical)
threshold. It is a fundamental open question in average case complexity to know wether this phase
is fundamentally hard for all sub-exponential complexity algorithms or not, and if AMP can be
overcomed in this regime. Finally at SNR values lower than the information theoretic threshold even
the MMSE is high, so that there exist no algorithm (efficient or not) able to perform good inference:
there is simply not enough information in the data to extract the signal. This easy-hard-impossible
phase diagram is very generic in high-dimensional inference problems.

When there is a hard phase/a computational-to-statistical gap, the phase transitions separating
the different regimes are of the first-order type with discontinuous MSE’s as in Fig. 8. When
there is no hard phase AMP is always Bayes optimal. Its performances matches the MMSE which
continuously degrades as the SNR gets smaller, see Fig 11.

Appendix A. Proof of inequality (42)

Let us drop the indices in the bracket ⟨−⟩ε. We start by proving

−2E⟨Q(L −E⟨L⟩)⟩ = E⟨(Q −E⟨Q⟩)2⟩ +E⟨(Q − ⟨Q⟩)2⟩.(71)

Using the definitions Q ∶= 1
nx ⋅x∗ and (41) gives

2E⟨Q(L −E⟨L⟩)⟩ = 1

n2
{E[X∗i ⟨XiX

2
j ⟩ − 2X∗i X∗j ⟨XiXj⟩ −

Z̃j√
ε
X∗i ⟨XiXj⟩]

−E[X∗i ⟨Xi⟩]E[⟨X2
j ⟩ − 2X∗j ⟨Xj⟩ −

Z̃j√
ε
⟨Xj⟩]}.(72)

The Gaussian integration by part formula E[Z̃jg(Z̃j)] = E g′(Z̃j) yields

E[ Z̃j√
ε
X∗i ⟨XiXj⟩] = E[X∗i ⟨XiX

2
j ⟩ −X∗i ⟨XiXj⟩⟨Xj⟩],

as well as

E[ Z̃j√
ε
⟨xj⟩] = E[⟨x2j⟩ − ⟨xj⟩2]

These simplify (72) to

2E⟨Q(L −E⟨L⟩)⟩ = 1

n2

n

∑
i,j=1
{E[Xi⟨xj⟩⟨xixj⟩ − 2XiXj⟨xixj⟩] −E[Xi⟨xi⟩]E[⟨xj⟩2 − 2Xj⟨xj⟩]}.(73)

The Nishimori identity implies E[⟨xj⟩2] = E[Xj⟨xj⟩] and
E[Xi⟨xj⟩⟨xixj⟩] = E[⟨xi⟩⟨xj⟩⟨xixj⟩] = E[⟨xi⟩⟨xj⟩XiXj].

These further simplify (73) to

2E⟨Q(L −E⟨L⟩)⟩ = 1

n2

n

∑
i,j=1
{E[⟨xi⟩⟨xj⟩XiXj − 2XiXj⟨xixj⟩] +E[Xi⟨xi⟩]E[Xj⟨xj⟩]}

= E[⟨Q⟩2] − 2E⟨Q2⟩ +E[⟨Q⟩]2

= −(E⟨Q2⟩ −E[⟨Q⟩]2) − (E⟨Q2⟩ −E[⟨Q⟩2])
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which is (71).

The identity (71) just proven then implies

2∣E⟨Q(L −E⟨L⟩)⟩∣ = 2∣E⟨(Q −E⟨Q⟩)(L −E⟨L⟩)⟩∣ ≥ E⟨(Q −E⟨Q⟩)2⟩.

An application of the Cauchy-Schwarz inequality then gives

2{E⟨(Q −E⟨Q⟩)2⟩E⟨(L −E⟨L⟩)2⟩}1/2 ≥ E⟨(Q −E⟨Q⟩)2⟩.

This ends the proof of (42).

Appendix B. AMP for the spiked Wigner model with generic prior

In this more generic scenario appear new quantities in AMP: the fields (Ci) as before but
also their variances (Vi) as we will see. The derivation starts as before from BP, but with factor

ψ(ij)(xi, xj ; yij) = exp{yij
√
λ/nxixi−λ/(2n)(xixj)2} as now the xi variables are not necessary binary

anymore. The BP equations are

Belief propagation for the spiked Wigner model: for i, j = 1, . . . , n:

m̂t
(ij)→i(xi)∝ ∫ dxjm

t
j→(ij)(xj) exp{yij

√
λ

n
xixj −

λ

2n
(xixj)2},

mt+1
i→(ij)(xi)∝ PX(xi) ∏

k(≠i,j)
m̂t
(ki)→i(xi).

Define the cavity mean and marginal means as, respectively,

bti→(ij) ∶= ∫ dxxmt
i→(ij)(x), bti ∶= ∫ dxxmt

i(x).

but now define also the cavity and maginal variances, that quantify the fluctuations of the cavity
messages:

vti→(ij) ∶= ∫ dxx2mt
i→(ij)(x) − (bti→(ij))2, vti ∶= ∫ dxx2mt

i(x) − (bti)2.

We expand the factor-to-node message in 1/√n and express everything in terms of the second order
statistics of the messages:

m̂t
(ij)→i(xi)∝ ∫ dxjm

t
j→(ij)(xj){1 + yij

√
λ

n
xixj −

λ

2n
(1 − y2ij)(xixj)2 + o(1/n)}

= 1 + xiyij
√

λ

n
btj→(ij) −

x2i
2

λ

n
(1 − y2ij)(vtj→(ij) + (btj→(ij))2) + o(1/n)

= 1 + xiyij
√

λ

n
btj→(ij) −

x2i
2

λ

n
(1 − y2ij)(vtj→(ij) + (btj→(ij))2) −

x2i
2
y2ij
λ

n
(btj→(ij))2

+ x
2
i

2
y2ij
λ

n
(btj→(ij))2 + o(1/n)

= exp{xiB̂t
(ij)→i −

x2i
2
V̂ t
(ij)→i} + o(1/n)
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with cavity field and precision (namely inverse variance)

B̂t
(ij)→i ∶=

√
λ

n
yijb

t
j→(ij), V̂ t

(ij)→i ∶=
λ

n
{(1 − y2ij)vtj→(ij) + (btj→(ij))2}.

The node-to-factor message then becomes

mt+1
i→(ij)(xi)∝ PX(xi) exp{xiBt

i→(ij) −
x2i
2
V t
i→(ij)}

where

Bt
i→(ij) ∶= ∑

k(≠i,j)
B̂t
(ki)→i, V t

i→(ij) ∶= ∑
k(≠i,j)

V̂ t
(ki)→i.

Define the (Bayesian optimal) MMSE denoiser as the posterior mean of a Gaussian channel,

η(b, v) ∶= E[X ∣Xv +Z
√
v = b] = ∫ dPX(x)x exp{xb − x2v/2}

∫ dPX(x) exp{xb − x2v/2}

where X ∼ PX and Z ∼ N (0,1). So in particular we can compute the mean bt+1
i→(ij) of m

t+1
i→(ij)(xi)

and its variance:

bt+1i→(ij) = η(Bt
i→(ij), V

t
i→(ij)), vt+1i→(ij) = η′(Bt

i→(ij), V
t
i→(ij))

where η′(b, v) ∶= ∂bη(b, v) is the first derivative w.r.t. the first argument of the denoiser, evaluated
in (b, v). We can thus close equations on the cavity means:

Relaxed belief propagation: for i, j = 1, . . . , n:
bt+1i→(ij) = η(Bt

i→(ij), V
t
i→(ij)), vt+1i→(ij) = η′(Bt

i→(ij), V
t
i→(ij)),

Bt
i→(ij) =

√
λ

n
∑

k(≠i,j)
ykib

t
k→(ik), V t

i→(ij) ∶=
λ

n
∑

k(≠i,j)
((1 − y2ik)vtk→(ik) + (btk→(ik))2).

We now express things in terms of cavity marginal means and variances

bt+1i = η(Bt
i , V

t
i ), vt+1i = η′(Bt

i , V
t
i ),

with

Bt
i ∶=
√

λ

n
∑
k(≠i)

ykib
t
k→(ik) and V t

i ∶=
λ

n
∑
k(≠i)
((1 − y2ik)vtk→(ik) + (btk→(ik))2).(74)

We expand the cavity mean as before and obtain

btk→(ik) = η(Bt−1
k −

√
λ

n
yikb

t−1
i→(ik), V

t−1
k − λ

n
((1 − y2ik)vti→(ik) + (bti→(ik))2))

= η(Bt−1
k , V t−1

k ) −
√

λ

n
yikb

t−1
i→(ik)η

′(Bt−1
k , V t−1

k ) +O(1/n)

= btk −
√

λ

n
yikb

t−1
i vtk +O(1/n).(75)
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Similarly for the cavity variance

vtk→(ik) = η′(Bt−1
k −

√
λ

n
yikb

t−1
i→(ik), V

t−1
k − λ

n
((1 − y2ik)vti→(ik) + (bti→(ik))2))

= vtk +O(1/
√
n).(76)

We used bt−1
i→(ik) = bt−1i +O(1/

√
n). Therefore

Bt
i =
√

λ

n
∑
k

ykib
t
k −

λ

n
bt−1i ∑

k

y2kiv
t
k +O(1/

√
n),

V t
i =

λ

n
∑
k

((1 − y2ik)vtk + (btk)2) +O(1/
√
n).

This finally gives the AMP algorithm (recall yij = yji):
Approximate message-passing (generic prior):

bt+1 = η(Bt,V t), vt+1 = η′(Bt,V t),

Bt =
√

λ

n
ybt − λ

n
bt−1 ○ (y2)vt, V t = λ

n
((1 − y2)vt + ∥bt∥2).

Here ○ is the Hadamard (entrywise) product, and the square operation as well as the function η
and η′ apply entrywise. Note that AMP can be defined for arbitrary denoisers, not necessarily the
MMSE denoiser.
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[8] T. Lesieur, F. Krzakala, and L. Zdeborová. Constrained low-rank matrix estimation: Phase transitions, approxi-

mate message passing and applications. Journal of Statistical Mechanics: Theory and Experiment, 2017(7):073403,
2017.

[9] F. Guerra and F. Toninelli. The infinite volume limit in generalised mean field disordered models. Markov Proc.
Rel. Fields, 9(2):195–2017, 2003.

[10] F. Guerra and F. Toninelli. The thermodynamic limit in mean field spin glass models. Communications in
Mathematical Physics, 230(1):71–79, 2002.

[11] F. Guerra. An introduction to mean field spin glass theory: methods and results. Mathematical Statistical
Physics, 2005.
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